求证明lim(x趋于∞)n〔(1╱n눀+π)+(1╱n눀+2π)+···+(1╱n눀+nπ)〕=1

2024-11-23 11:46:34
推荐回答(2个)
回答1:

因为1/(n^2+kπ)>1/(n^2+(k+1)π),所以
n^2/(n^2+π)>n[1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)]>n^2/(n^2+nπ)
因为lim(n->∞) n^2/(n^2+π)=lim(n->∞) n^2/(n^2+nπ)=1
所以根据极限的夹逼性
lim(n->∞) n[1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)]=1

回答2:

朋友,你好!详细过程在这里,另外应该是n趋于∞,希望有所帮助,望采纳哦