数学家的故事读后感250个字

小学的
2024-11-08 04:44:42
推荐回答(5个)
回答1:

阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。
《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:
<π< ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。

《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的
。在这部著作中,他还提出了著名的"阿基米德公理"。
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。

正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。

回答2:

楼主您好!
暑假里,我读了一本书,书的名字叫《数学家的故事》,讲述了许多数学名人的故事。比如毕达哥拉斯、阿基米德、高斯……其中,我最感兴趣的是关于祖冲之的故事。
祖冲之是我国南北朝时期一位伟大的科学家,他对圆周率的计算得出了非常精确的结果。这篇文章讲的是祖冲之经过很长时间的编写,终于写成了《大明历》,他上书皇帝,请求颁布实行。皇帝命令主管天文历法的宠臣戴法兴进行审查。但是戴法兴思想保守,是个腐朽势力的卫道士,他极力反对新历法。面对戴法兴的刁难、攻击,祖冲之寸步不让,和他唇枪舌剑的辩论。最终,《大明历》没有通过,后来在祖冲之去世后10年,《大明历》才颁布实行。
读了这个故事,使我对祖冲之坚贞不屈的精神非常敬佩。正因为他有这样的精神,才能持之以恒地坚持。是啊,任何事情要取得成功,都离不开“坚持”两个字。不由地,我想到了许多人,有文化名人、爱国将士,他们何尝没有这样的精神呢!
读《数学家的故事》让我更加喜欢数学,更让我懂得了许多道理。其实,学习数学并不难,数学王子高斯曾有三大秘诀:1.善于观察 2.善于动手 3.善于思考。其实,只要我们喜爱数学,就一定能学好数学!如果我们像数学先辈们那样努力,数学一定又能有新的突破!
谢谢楼主!

回答3:

《数学家的故事》读后感
暑假里,我读了一本书,书的名字叫《数学家的故事》,讲述了许多数学名人的故事。比如毕达哥拉斯、阿基米德、高斯……其中,我最感兴趣的是关于祖冲之的故事。
祖冲之是我国南北朝时期一位伟大的科学家,他对圆周率的计算得出了非常精确的结果。这篇文章讲的是祖冲之经过很长时间的编写,终于写成了《大明历》,他上书皇帝,请求颁布实行。皇帝命令主管天文历法的宠臣戴法兴进行审查。但是戴法兴思想保守,是个腐朽势力的卫道士,他极力反对新历法。面对戴法兴的刁难、攻击,祖冲之寸步不让,和他唇枪舌剑的辩论。最终,《大明历》没有通过,后来在祖冲之去世后10年,《大明历》才颁布实行。
读了这个故事,使我对祖冲之坚贞不屈的精神非常敬佩。正因为他有这样的精神,才能持之以恒地坚持。是啊,任何事情要取得成功,都离不开“坚持”两个字。不由地,我想到了许多人,有文化名人、爱国将士,他们何尝没有这样的精神呢!
读《数学家的故事》让我更加喜欢数学,更让我懂得了许多道理。其实,学习数学并不难,数学王子高斯曾有三大秘诀:1.善于观察 2.善于动手 3.善于思考。其实,只要我们喜爱数学,就一定能学好数学!如果我们像数学先辈们那样努力,数学一定又能有新的突破!

回答4:

高斯
印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。

回答5:

太刻苦学习了!!