令x4+x2=y,∴原式=(y-4)(y+3)+10=y2-y-2=(y+1)(y-2)将x4+x2=y代入,所以原式=(x4+x2+1)(x4+x2-2)=(x4+x2+1)(x2+2)(x2-1)=(x4+x2+1)(x2+2)(x+1)(x-1)=(x2+x+1)(x2-x+1)((x2+2)(x+1)(x-1)故答案为:(x2+x+1)(x2-x+1)((x2+2)(x+1)(x-1).