设等比数列的首项为a1,公比为q,若q=1,则 lim n→∞ Sn= lim n→∞ na1不存在若q≠1,时, lim n→∞ Sn= lim n→∞ a1(1?qn) 1?q = 1 2 ∴ a1 1?q = 1 2 ,且-1<q<1且q≠0∴a1= 1 2 (1?q)∴0<a1<1且a1≠ 1 2 故答案为:(0, 1 2 )∪( 1 2 ,1)