齐次线性方程组的基础解系及通解。

如图。
2025-02-18 18:55:45
推荐回答(1个)
回答1:

增广矩阵化最简行

1    -1    -1    1    0    

1    -1    1    -3    1    

1    -1    -2    3    -12    

第3行, 减去第1行×1

1    -1    -1    1    0    

1    -1    1    -3    1    

0    0    -1    2    -12    

第2行, 减去第1行×1

1    -1    -1    1    0    

0    0    2    -4    1    

0    0    -1    2    -12    

第3行, 减去第2行×(-12)

1    -1    -1    1    0    

0    0    2    -4    1    

0    0    0    0    0    

第2行, 提取公因子2

1    -1    -1    1    0    

0    0    1    -2    12    

0    0    0    0    0    

第1行, 加上第2行×1

1    -1    0    -1    12    

0    0    1    -2    12    

0    0    0    0    0    

增行增列,求基础解系

1    -1    0    -1    12    0    0    

0    1    0    0    0    1    0    

0    0    1    -2    12    0    0    

0    0    0    1    0    0    1    

第1行,第3行, 加上第4行×1,2

1    -1    0    0    12    0    1    

0    1    0    0    0    1    0    

0    0    1    0    12    0    2    

0    0    0    1    0    0    1    

第1行, 加上第2行×1

1    0    0    0    12    1    1    

0    1    0    0    0    1    0    

0    0    1    0    12    0    2    

0    0    0    1    0    0    1    

得到特解(12,0,12,0)T基础解系:(1,1,0,0)T(1,0,2,1)T因此通解是(12,0,12,0)T + C1(1,1,0,0)T + C2(1,0,2,1)T