一个非常非常难的函数题目 求大哥大姐帮忙解一下

2025-03-25 12:10:22
推荐回答(1个)
回答1:

直线y=-√3x+4√3与直线y=√3x相交于点P
则有-√3x+4√3=√3x
2√3x=4√3
x=2
代入得
y=2√3
即P点的坐标为(2,2√3)

直线y=-√3x+4√3与X轴相交于点A
将y=0代入得x=4
即A点坐标为(4,0)
则OA=4
OP=√[2^2 +(2√3)^2]=4
PA=√[2^2 +(4√3-2√3)^2]=4
所以OA=OP=PA=4
即:△OPA是等边△

动点E从O到P需要时间为t=OP/1=4
时间的范围为0当P在OP上运动时,即0矩形EBOF与△OPA重叠部分的面积为S=三角形OEF的面积
OE=t,OF=OE/2=t/2,EF=(t√3)/2
S=OF*EF/2=(t^2 *√3)/8
当P在PA上运动时,即4矩形EBOF与△OPA重叠部分的面积为S=梯形OE1EF的面积(E1为BE与OP的交点)
PE1=E1E=PE=t-4
OE1=OP-PE1=4-(t-4)=8-t
EF=E1F=OE1*(√3)/2=(8-t)*(√3)/2
OF=(OE1)/2 +EE1=(8-t)/2 +(t-4)=t/2
所以S=(EE1 +OF)*EF/2=√3*(32t-64-3t^2)/8=-(√3)/8 *[3(t-16/3)^2 -64/3]

当t=16/3时,S有最大值为8√3)/3