(2007?绵阳)如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M

2025-04-05 01:10:33
推荐回答(1个)
回答1:

解:(1)由题意可知C(0,-3),-

b
2a
=1,
∴抛物线的解析式为y=ax2-2ax-3(a>0),
过M作MN⊥y轴于N,连接CM,则MN=1,CM=
5

∴CN=2,于是m=-1.
同理可求得B(3,0),
∴a×32-2a×3-3=0,得a=1.
∴抛物线的解析式为y=x2-2x-3.

(2)由(1)得A(-1,0),E(1,-4),B(3,0),C(0,-3).
∵M到AB,CD的距离相等,OB=OC,
∴OA=OD,
∴点D的坐标为(0,1),
∴在Rt△BCO中,BC=
OB2+OC2
=3
2

OB
OD
3
1
=3

在△BCE中,∵BC2+CE2=(32+32)+[(1-0)2+(-4+3)2]=20=(3-1)2+(0+4)2=BE2
∴△BCE是Rt△
BC
CE
3
2
2
=3

OB
OD
BC
CE

OB
BC
OD
CE

∴Rt△BOD∽Rt△BCE,得∠CBE=∠OBD=β,
因此sin(α-β)=sin(∠DBC-∠OBD)=sin∠OBC=
CO
BC