解:(1)由题意可知C(0,-3),-
=1,b 2a
∴抛物线的解析式为y=ax2-2ax-3(a>0),
过M作MN⊥y轴于N,连接CM,则MN=1,CM=
,
5
∴CN=2,于是m=-1.
同理可求得B(3,0),
∴a×32-2a×3-3=0,得a=1.
∴抛物线的解析式为y=x2-2x-3.
(2)由(1)得A(-1,0),E(1,-4),B(3,0),C(0,-3).
∵M到AB,CD的距离相等,OB=OC,
∴OA=OD,
∴点D的坐标为(0,1),
∴在Rt△BCO中,BC=
=3
OB2+OC2
,
2
∴
=OB OD
=3,3 1
在△BCE中,∵BC2+CE2=(32+32)+[(1-0)2+(-4+3)2]=20=(3-1)2+(0+4)2=BE2
∴△BCE是Rt△
=BC CE
=3,3
2
2
∴
=OB OD
,BC CE
即
=OB BC
,OD CE
∴Rt△BOD∽Rt△BCE,得∠CBE=∠OBD=β,
因此sin(α-β)=sin(∠DBC-∠OBD)=sin∠OBC=
=CO BC