(1)∵(a+2)2+
=0,
b-2
∴a=2=0,b-2=0,
∴a=-2,b=2,
∵CB⊥AB
∴A(-2,0),B(2,0),C(2,2),
∴△ABC的面积=
×2×4=4;1 2
(2)解:∵CB∥y轴,BD∥AC,
∴∠CAB=∠5,∠ODB=∠6,∠CAB+∠ODB=∠5+∠6=90°,
过E作EF∥AC,如图①,
∵BD∥AC,
∴BD∥AC∥EF,
∵AE,DE分别平分∠CAB,∠ODB,
∴∠3=
∠CAB=∠1,∠4=1 2
∠ODB=∠2,1 2
∴∠AED=∠1+∠2=
(∠CAB+∠ODB)=45°;1 2
(3)解:①当P在y轴正半轴上时,如图②,
设P(0,t),
过P作MN∥x轴,AN∥y轴,BM∥y轴,
∵S△APC=S梯形MNAC-S△ANP-S△CMP=4,
∴
-t-(t-2)=4,解得t=3,4(t-2+t) 2
②当P在y轴负半轴上时,如图③
∵S△APC=S梯形MNAC-S△ANP-S△CMP=4
∴
+t-(2-t)=4,解得t=-1,4(-t+2-t) 2
∴P(0,-1)或(0,3).
艹啊扭扭捏捏那你呢就