影响天然气水合物形成的添加剂研究综述 本研究为国家973计划项目2009CB219500、国土资源部公益性科研专项200811014和天然气水合物118专项GZH200200201联合资助。
王力峰 陆敬安 梁金强
(广州海洋地质调查局 广州 510760)
第一作者简介:王力峰(1978—),男,博士,工程师,主要从事海洋地质和天然气水合物研究,E-mail:charles.wlf@gmail.com
摘要 天然气水合物作为未来新的能源增长点,长期受到科研界和工业界的关注,有关该物质的添加剂研究正逐渐受到各个方面的重视。本文以综述的形式展示添加剂在天然气水合物研究过程中的重要性,主要侧重简单体系和表面活性剂的研究方向。前者在工业生产中具有广泛的应用前景,不但可有效降低管道阻塞,还可增加储气能力;后者在地质勘探中则解释了天然气水合物聚集成藏的模式之一,即海底世界中丰富的自养生物分泌的表面活性剂具有独立地加速水合物形成并稳定的特殊作用。
关键词 天然气水合物 添加剂 简单体系 表面活性剂
1 前言
天然气水合物简称为水合物,由水分子组成的笼状构架包裹其他气体组成,通常在高压低温的环境下赋存,在自然界分布范围较广,尤其在海底大陆架区域资源量丰富[1]。目前发现的水合物站位样品化学成分分析表明,其包裹的气体主要以甲烷分子为主,并且储量巨大,科学界估计这些能源可能为已发现的常规能源的两倍,具有重要的能源战略研究意义,是当代地球科学和能源工业发展的热点[2]。水合物研究涉及新能源的勘查开发、温室效应、全球碳循环和气候变化、古海洋环境、海洋地质灾害、天然气运输、油气管道堵塞和军事防御等课题,并可能对地质学、环境科学和能源工业的发展产生深刻的影响。
天然气水合物添加剂研究是一项基础工作,为水合物后续开发利用提供基本物理化学参数。研究内容主要是测定添加剂对水合物稳定平衡的影响作用。早在上个世纪六十年代,工业界关注水合物仅是为了解决因其导致的油气输送管道和设备堵塞,在储气设备、管道中形成水合物堵塞影响生产,甚至造成管线乃至整个油井报废;随着科研界近些年对水合物不断加深认识,水合物添加剂研究逐渐成为核心的研究问题之一,未来的水合物矿产开采储运等将建立在其基础研究之上[3]。因此通过添加剂控制水合物的生成条件(温度、压力等),抑制或者加速水合物的形成,具有重要的实际意义。目前有关天然气水合物的添加剂研究可分为两大类,即以烷烃类为主的简单体系和实验室或者自然界的生物合成衍生物为主的表面活性剂体系。前者是工业界研究重点方向,其有利于解决天然气水合物管道阻塞和长距离天然气储运技术的突破;后者是科研界关注的重点,对于解决水合物海底富集成藏系统提供了一种可行解释方案。
2 简单体系
作为新能源物质,天然气水合物所包裹的甲烷分子是最主要的经济产物,因此科研界和工业界的实验和勘探开采设计中假象对象多以烷类水合物为主。但是自然界中单纯的甲烷水合物比较少见,尤其以来自深层热分解气源的水合物,会含有其他的烃类或者简单分子,本节主要概述甲烷与其他烃类气体等组合共存时的形成稳定研究。
2.1 烷类体系
Englezos等[4]研究了三种不同组成比例的甲烷—乙烷混合物的三相平衡条件(图1),当压力<5.0M Pa下,随着混合物组成中甲烷含量的增加,在相同压力条件下水合物的平衡温度不断降低,在相同温度条件下压力不断升高,表明低压下甲烷水合物平衡温度比乙烷水合物平衡温度低,而甲烷水合物平衡压力比乙烷水合物平衡压力高。Sugahara等[5]单一乙烷组分水合物平衡中也证实了这一点。当压力>10.7 M Pa,温度>290 K 时,在相同压力条件下乙烷水合物形成的温度比甲烷水合物的温度低。
图1 甲烷+乙烷水合物三相平衡图(引自文献[4])Fig.1 Phase Equilibrium for methane+ethane hydrates
Holder等[6]在研究中发现随着乙烷—丙烷混合物中丙烷摩尔分数的增加,相同温度下水合物平衡压力逐渐降低。在低压条件下随着烷烃摩尔质量的增加,烷烃水合物平衡温度逐渐升高,压力不断降低。即形成水合物烷烃的摩尔质量越大,其水合物稳定存在的范围越大。其中丙烷的摩尔分数>32.2%时生成的水合物均为结构Ⅱ型;丙烷的摩尔分数<15%时则为结构I型;当丙烷的摩尔分数介于两者之间时,低温生成的水合物为结构II型,而较高温度为结构Ⅰ型,但是在丙烷的摩尔分数为27.1%出现了异常,生成的水合物均为结构Ⅱ型。
2.2 二氧化碳体系
Adisasmito等[7]在研究甲烷—二氧化碳水合物的相平衡时发现(图2):压力<9 MPa时随着混合物中所含二氧化碳的摩尔分数的增加,等温下生成水合物的压力降低。而Sug-ahara等[5]却发现在压力约>7.0 MPa,温度>281.5 K 时,相同压力下二氧化碳形成水合物的温度更低,而在低于此温压条件下,其水合物形成温度比乙烷的低,比甲烷高。这表明了二氧化碳与甲烷形成水合物的难易程度顺序与压力有很大的关系,在利用二氧化碳置换自然生成的天然气水合物来进行天然气水合物开采时要考虑压力的因素。
Adisasmito等[8]又研究了二氧化碳对乙烷、丙烷、异丁烷和丁烷形成水合物相平衡的影响。随着体系平衡时气相中二氧化碳的含量的增加,相同温度下水合物平衡的压力逐渐降低。在相同温度体系平衡时并且气相中二氧化碳的含量相等条件下,水合物平衡所需的压力大小顺序为:乙烷>丙烷>异丁烷>丁烷,这与不含二氧化碳的简单体系的变化规律是一致的,说明二氧化碳虽然使水合物的形成向高温、低压方向移动,但是并没有改变烷烃形成水合物的温度压力变化规律。
图2 甲烷+二氧化碳水合物平衡等温线图(引自文献[7])Fig.2 Isotherm diagram of methane+carbon dioxide hydrate
2.3 其他有机体系
Jager等[9]研究发现在2~14 MPa压力条件下,水—甲烷—1,4-二氧杂环己烷(C4H8O2)体系的水合物相平衡稳定性与水溶液相中1,4-二氧杂环己烷浓度密切相关(图3)。通过van-der-Waals和Platteeuw理论进行了模拟,液相的活度系数取决于水—1,4-二氧杂环己烷气液相平衡,实验结果和模拟结果取得了较好的一致性。当溶液中1,4-二氧杂环己烷浓度在1%~7%之间时,在相同温度下甲烷水合物的平衡压力最低。1,4-二氧杂环己烷浓度从7%增加到30%,在相同温度下甲烷水合物的平衡压力升高。这表明在利用二氧杂环己烷作为水合物形成的抑制剂时,要保证其添加浓度高于7%,这样才能取得预期的效果,否则,不但起不到抑制水合物生成的效果,还会起到促进作用。
醇类是常用的水合物抑制剂,甲醇可溶于烃类液体中且价格经济,是最为常见的抑制剂。Ng等[10]研究了甲醇对甲烷、乙烷、丙烷和二氧化碳形成水合物平衡条件影响发现,随着溶液中甲醇浓度的增加,形成水合物平衡温度降低,压力增高,水合物稳定存在的范围逐渐变小。
图3 甲烷+1,4-二氧杂环己烷水合物平衡等温线图(引自文献[9])Fig.3 Phase Equilibrium for methane+1,4-dioxane hydrates
Mooijer等[11]研究了添加剂为环状物质,例如形成结构II型水合物的四氢吡喃(THP)、环丁酮(CB);形成结构H 型的甲基环己胺(MCH)以及可以形成结构I型和结构II型水合物的氟代烷:三氟甲烷和四氟甲烷等对水合物的稳定平衡影响。结果表明添加剂的使用均降低了水合物平衡的压力,伴随平衡压力的下降,水合物的储气量也有较大的降低。添加剂对水合物平衡压力的降低效应高低顺序为:四氢吡喃>环丁酮>甲基环己胺(MCH)>三氟甲烷>四氟甲烷,对储气量的降低效应顺序为:四氢吡喃>环丁酮=甲基环己胺(MCH)>四氟甲烷>三氟甲烷。
3 表面活性剂
表面活性剂是第二次世界大战后随着石油化工的极速发展而兴起的一类新型化学品,由于其在工业中的广泛应用而具有“工业味精”的称号。能使溶剂表面张力降低的性质称为表面活性,把具有表面活性的物质称为表面活性物质。在水中溶入某些物质时,水溶液表面张力发生变化,改变体系界面状态,从而产生润湿、乳化、起泡、增溶等作用,达到实际应用要求。
为了提高天然气水合物的生成量,减少实验的合成等待时间,室内研究时会使用机械搅拌(m echanically stirring)装置作为辅助,缩短水合物的实验周期。水合物生成气多为难溶性的小分子物质,例如甲烷,水中溶解度较小,主要集中在水—气界面,随着实验进程中水合物的生成,界面上会形成一层薄幕,阻止水合物生成气进入液相中,进而阻碍了水合物生成量,延缓生成时间。虽然机械搅拌可加速水合物的生成速度,但是其生产成本、效率以及在深海开采过程中的技术难度限制其应用。首先,在自然状态下,水合物并没有外界加速搅拌过程促进大量生长;其次,在工业项目的储气过程中,过滤水合物与同时过冷条件下所产生的冰难以分离,增加此工艺流程必定消耗掉大量时间;最后,由于表层冰的存在必然促使机械搅拌的能量消耗上升,产生额外的开销。因此无论能源寻矿、还是储气环保,都需要有一个更加合适的水合物合成加速方式。
Kalogerakis等[12]进行了利用阴离子作为表面活性剂,提高气水合物的生成量从而提高效率的研究。此后这方面的研究得到了飞速发展。表面活性剂的研究也逐渐由人工合成制剂(synthetic surfactant)转如到自然界的生物制剂(biosurfactant)。
3.1 化学表面活性剂
Rogers等[13]进行了有关化学表面活性剂的对比试验研究。在没有添加表面活性剂的器皿中,经过5天时间仍然没有形成大范围的水合物。但是在添加特定表面活性剂之后,情况大有改变,很大程度上促进了天然气水合物的生成速度。在实验中加入浓度为282 ppm 十二烷基硫酸钠(SDS,sodium dodecyl sulfate)后,在先前的同样实验环境中,仅用3小时便形成了充满整个器皿的天然气水合物,时效性非常高(图4)。
图4 无表面活性剂5天后水合物器皿(左图);有表面活性剂3小时后水合物器皿(右图)(引自文献[13])Fig.4 Hydrates formed after 5 days without surfactant(left);Hydrates formed after 3 hours with surfactant(right)
为了跟踪实验的进程和记录效率,全程除了测试温度压力等仪器外,还使用光纤做成的光学孔径检测仪(boroscope)研究天然气水合物在溶液内部生长情况。通过判断反射光的强度,可看到在液面内部任何位置都可形成水合物,由于其密度小于水的密度,很多快速形成的小的晶粒浮在水面上,当电荷消退后加速聚集强度,并不断地集附在不锈钢的内表面形成更大的絮凝状的固体,整个生长系统表现为对称形式。生成的水合物多以絮状结构漂浮在液面,天然气还可以不断渗透到这些组织继续与孔隙水反应,增大形成的质量。后期的计算处理显示,孔隙水几乎全部与天然气反应。上述的实验观察表明表面活性剂有效地把结构水(structured water)和天然气分别吸附在它的亲水基和亲油基两个区域,实际上形成了气水合物结核中心。
3.2 生物表面活性剂
虽然实验室中化学表面活性剂可以催化天然气水合物的生成,地质学家开始关注海底自养生物活性剂是否也能加速原位水合物的形成。研究表明水生微生物可分泌生物表面活性剂,该种物质除了可降解土壤中的有毒物质,还可以使水中难以溶解的碳有机质聚合成团。研究发现部分地区的水合物中吸附的天然气来自于生物,而微生物群落也多在水合物丘附近生存繁盛[14]。
目前来看,有三种生物表面活性剂值得研究它们对水合物的促进作用:
1)Surfactin该物质由枯草杆菌(bacillus subtilis)分泌,在医学上是一种非常有效的抗生素,同时具有抗血栓功能。
2)R ham nolipid该物质来自于绿脓杆菌(pseudom onas aeruginosa)分泌的物质,化工生产中用于洗面奶的应用。
3)E m ulsan该物质由醋酸钙不动杆菌(acinotobacter calcoaceticus)分泌,是良好的石油乳化剂,可大面积的清除海中石油污染。
其中surfactin和rham nolipid在水溶液中溶解量较低时可形成胶束;em ulsan(分子量几乎为106量级)不会形成胶束。以上三种物质皆为阴离子,可通过不同方式增加天然气水合物在孔隙介质中的生成速率,缩短了其合成诱导时间。
图5 表面活性剂促进水合物生长图(引自文献[13])Fig.5 Hydrates for bentonite with rham nolipid
生物表面活性剂在无外界搅动情况下,可有效加速气水合物的生成,图5为在斑脱土中添加rham nolipid后天然气水合物的生成图片,在加入表面活性剂的一侧可看见白色的水合物大片存在,在没有添加表面活性剂的一侧则几乎没有水合物的存在。这个实验说明在同样的实验条件下,表面活性剂的确加速了水合物的合成速度以及产量。
在墨西哥湾获取的含有天然气水合物的泥层中,辨认出两种生物微生物,B.Subtilis和P.Aeruginosa,它们在天气水合物合成过程中所起的加速作用也已经得到证实。为了评定这些微生物在深海环境下对天然气水合物的影响,B.Subtilis在实验室里培养了一段时间后,在培养集中获得了大量的surfactin,该物质目前是最有效的生物表面活性剂,实验证明其可使水的表面张力从72mN/m降到27m N/m,仅需要达到25ppm 浓度即可形成临界胶束浓度(CMC,critical micelle concentratio)。在低于CMC浓度时,水的表面张力对于水中surfactin浓度极其敏感,因此通过检测培养基中水的表面张力,利用W ilhelnlv Plate方法可跟踪水中的surfactin浓度。
培养基中的水表面张力变化以及表面活性剂的浓度变化逐渐增加,当surfactin浓度达到CM C时,水的表面张力降到了30mN/m,整个实验过程历时4天。培养完成后,sur-factin从培养基中分离,再经过蒸馏水的稀释后使其降低达到CMC浓度。实验的器皿被分成三个小格,分别盛有sand,kaolin/sand,和bentonite/sand三种孔隙介质(图6)。在使用含有90%甲烷、6%乙烷、4%丙烷作为气源密封加压后,可观测到天然气水合物在bentonite/sand的孔隙介质中大量生成,其他两种介质的生成量相对较小。这个实验表明了生物表面活性剂在浓度要求不是太高的情况下即可有助于生成天然气水合物,并且气水合物的生长栖息介质具有选择性,此特性的机理还可有待于进一步的研究。
图6 水合物形成对孔隙介质的趋向性(引自文献[13])Fig.6 H ydrates show surface specificity for bentonite
同时作为对比实验研究,实验所使用的器材和过程基本相同,仅是天然气组分变为使用无机物的二氧化碳,正如预期的设想情况一样,由于二氧化碳对生物表面活性剂的亲油基的非亲和性,导致活性剂不能集中聚拢二氧化碳物质,因此不能有效地合成二氧化碳为客气体的气水合物。
3.3 促进机理
表面活性剂是碳氢化合物分子上的一个或几个氢分子被极性基团取代而构成的物质。因此它的分子构成一般由极性基和非极性基构成,具有不对称性。极性基容易溶于水,具有亲水性质,所以称为亲水基;非极性基很难溶于水,易溶解于非极性的溶剂中,例如油类等,具有亲油性质,故称为亲油基。表面活性剂分子具有“两亲结构”,而且水是极强性液体,当表面活性剂溶于水时表现出一种特殊的吸附现象Seddon[15]。
关于表面活性剂对天然气水合物的生成速率和生成量的促进机理,有如下的微观解释:
(1)表面活性剂对天然气水合物成核的影响
水合物反应阶段的前期是晶核的形成阶段,形成速度由诱导时间的长短来反映,诱导时间短,成核速度快,反之,成核速度慢。表面活性剂从总体上促进水合物晶核快速形成,大大地缩短了诱导时间,这种现象以二次成核理论以及表面活性剂的性质得到解释:在诱导时间内的成核初期,由于晶核浓度低、尺寸小,不可能分裂,而在成核晚期,由于晶核浓度有所增加,特别是在气相和液相交界处,不仅晶核浓度、尺寸足以促使其生长,而且在该处有较高浓度的反应物浓度,因此有可能稳定地生长为水合物。
同时,由于表面活性剂具有低浓度时能显著降低其表面张力的性质,使得水合物晶体不会在两相交界处停留而被迫离开相交界面,这样的扰动存在使晶体和晶体间以及晶体与反应釜壁间产生剧烈地碰撞,这些晶体又被再次分裂为水合物晶核,从而使得晶核成长速度急剧增加,从而使诱导时间急剧缩短,有时只有几分钟或者十几分钟,同时也由于表面活性剂的性质与其浓度有一定的关系导致水合物诱导时间也与浓度有一定的依赖关系。
(2)表面活性剂对天然气水合物生长速率的改善
加入表面活性剂后,水合物的晶体生长速率大大加快。在通常状态下天然气和水是互不相溶的两相,而天然气水合物的生成是由天然气气体分子融合在水的包络状晶体中。在水合物反应前,天然气和水是互不相溶的两相,只是在界面上两者才有互相作用并实现水合反应。如何降低表面张力使气相物质能更好地增溶到液相中,气体分子进入水的包络状晶体中,这时恰好为气体水合物生成过程的关键。表面活性剂可起到这种作用,添加适当的表面活性剂能在互不相溶的两相中产生增溶作用,从而大大扩大了两相的有效接触面积,使得结晶生成速度加快。
另一方面,由于水合物反应是在两相界面处发生的,表面活性剂具有较小表面张力的特性使得它有一个重要作用:越是在水合物成核后期,二次成核所引起的成核速度增加的幅度越大,这种影响继续作用到水合物生长的初期,在表面活性剂的作用下,界面上形成的天然气水合物晶体及时离开界面,同时将反应放出的潜热传递出去,起到减少传热阻力的作用。
3.4 化学与生物催化作用的异同点
两者的催化机理相同,表面活性剂均由具有不对称的基团组成,在天然气水合物形成适宜的环境下形成胶束,天然气集中溶进在由胶束链形成的球形空间中。通常烷基形成指向内部的亲油基,亲水基则形成于胶束的外部。胶束形成了天然气水合物的生长点,是集中天然气高浓度的液相场所。两者皆通过改变有效浓度以及缩短诱导时间的方式加速了天然气水合物的形成。
化学表面活性剂是未来天然气储运或者二氧化碳废气深埋等工业界关注的重点,它可大规模的投资生产来实现经济性的效益,但对于深海天然气水合物的催化作用研究和实现尚不够成熟。而生物表面活性剂的发现则对深海天然气水合物形成提供了十分有意义的解释,深海生物的多样性不但以天然气水合物形成的微观生化环境为栖息场所,同时其生物进化适应环境的能力导致天然气水合物的加速形成,这种有趣的现象为勘探开发该种矿产提供了新的研究思路。
4 结语
天然气水合物添加剂研究是一项基础的学科,伴随水合物的研究而逐步发展形成特色领域。在工业应用中,通过添加剂中简单体系的多参数实验,表明了添加剂可有效改变工业中的水合物合成条件和速率。天然气水合物在加入表面活性剂之后,在没有外界机械搅拌的情况下促进了天然气水合物的生成。另外,海底微生物分泌物相关的表面活性剂的发现,突出显示了天然气水合物形成的复杂性和多变性。对比实验研究表明生物表面活性剂在无外界机械搅拌的情况下,可提高天然气水合物的形成速度和产量。这一现象对于工业生产或是未来海底探寻该矿源都有积极的意义。
参考文献
[1]Sloan E D.Clathrate hydrates of natural gases,second edition[M].New York:Marcel Dekker Inc,1998,19~23
[2]Mikov A V.Global estimates of hydrate-bound gas in marine sediments:how much is really out there?[J].Earth Science Reviews,2004,66(3):183~197
[3]Lederhos J P,Long J P,Sum A,Christiansen R.L,Sloan E D.Effective kineticinhibitorsfor gas hydrates[J].Chemical Engineering Science,1996,51(8):1221~1229
[4]Englezos P,Kalogerakis N,Dholabhai P D,Bishnoi P R.Kinetics of formation of methane and ethane gas hydrates[J].Chemical Engineering Science,1987,42(11):2647~2658
[5]Sugahara T,Morita K,Ohgaki K.Stability boudaries and small hydrate-cage of ethylene hydrate system[J].Chemical Engineering Science,2000,55(24):6015~6020
[6]Ho1der G D,Hand J H.Multiple-phase equilibria in hydrates from methane,ethane,propane and wave mixtures[J].AlChe Journal,1982,28(3):400~447
[7]Adisasmito S,Robert J,Sloan E D.Hydrates of carbon dioxide and methane mixtures[J].Journal Chemistry Engineering Data,1991,36(1):68~71
[8]Adisasmito S,Sloan E D.Hydrates of hydrocarbon gases containing carbon dioxide[J].Journal Chemistry Engineering Data,1992,37(3):343~349
[9]Jager M D,Deugd RM,Peter J,Swaan A,Sloan E D.Experimental determination and modeling of structure II hydrates in mixtures of methane+water+1,4-dioxane[J].Fluid Phase Equilibria,1999,165(2):209~223
[10]Ng H J,Robinson D B.Hy drate formation in systems containing methane,ethane,propane,carbon dioxide or hydrogen sulfide in the presence of methanol[J].Fluid Phase Equilibria,1985,21(1):145~155
[11]Mooijer M M,Heuvel V D,Peters C J.Influence of water-insoluble organic components on the gas hydrate equilibrium conditions of methane[J].Fluid Phase Equilibria,2000,172(1):73~91
[12]Kalogerakis N,Jamaluddin A K,Dholabhai P D,Bishinoi P R.Effect of surfactants on hydrate formation kinetics[M].SPE international symposium on oilfield chemistry.1993,New Orleans
[13]Rogers R,ZhangG Z,Dearman J,Woods C,Investigationsinto surfactant/gas hydrate relationship[J].Journal of petroleum science and engineering.2005,56(3):82~85
[14]Lanoi B D,Roger S,Myron T,Stephen T.Bacteria and archaea physically associated with Gulf of Mexico gas hydrates[J].Applied and Environmental Microbiology,2001,67:5143~5153
[15]Zhong,Y and Ronger R.Surfactant effects on gas hydrate formation[J].Chemical Engineering Science,2000,55:4175~4187
Reviews of Additives Effects on Formation of Gas Hydrate
Wang Lifeng,Lu Jingan,Liang Jinqiang(Guangzhou Marine Geological Survey,Guangzhou,510760)
Abstract:As gas hydrate,considered as the new type of energy in the future,has been the growing concern in academic and industry comm unities,the research in additives of that substance is gradually becoming more important than before.This paper reviewed the forms of additives in gas hydrate,and mainly focused on the simple system and the surfactant showing the importance of such processes.The former in the industrial production has wide application,not only can effectively reduce the pipeline obstruction,but also increase the storage capacity for gas;the latter can be used as one way to explain gas hydrate accumulation of modes in the geological exploration that namely in various underwater environment the autotrophs surfactant can independently accelerate formation and maintain stability for gas hydrate.
Key words:Gas hydrate;Additives;Simple system;Surfactant