∵复数z1,z2满足|z1|=1,|z2|=1,可令z1=cosA+isinA,z2=cosB+isinB∵|z1-z2|= 3 ,故有(cosA-cosB)2+(sinA-sinB)2=3,整理得2cosAcosB+2sinAsinB=-1又|z1+z2|2=(cosA+cosB)2+(sinA+sinB)2=2+2cosAcosB+2sinAsinB=1∴|z1+z2|=1故答案为:1.