姜慧超 穆星 车燕
摘要 根据济阳坳陷中、浅层天然气成藏规律和成藏特点,首次应用油-气-水三相盆地模拟、古热史恢复和油溶释放气成藏定量分析等技术,采用多种计算方法,确定了济阳坳陷各区带天然气资源量,初步建立了一套适用于陆相富油盆地天然气资源评价的技术方法,对油溶释放气成藏规律的探讨和天然气生、排、运、聚、散动态地质过程的解析,为油田天然气的勘探和部署提供了依据。
关键词 济阳坳陷 天然气 运移聚集 盆地模拟 资源评价
一、引言
济阳坳陷是典型的富油盆地,干酪根以I型为主,埋藏浅,热演化程度低,主要以生油为主。截至1999年底,胜利油区累计探明天然气储量1850×108m3,其中气层气储量341.43×108m3,溶解气储量1508.61×108m3,溶解气占天然气总量的80%以上,天然气的生成、运移和成藏均受到油溶解作用的影响。
针对济阳坳陷中、浅层天然气以溶解气为主的特点,对天然气资源评价提出如下技术要求:为较好解决天然气的初始运移相态问题,在生气与排气方面研究,需用油-气-水三相的盆地模拟软件;济阳坳陷天然气的一个重要来源是油溶释放气,需要形成一套天然气的溶解与脱气作用的定量评价技术;天然气的溶解与脱气受到液态烃运移过程的控制,需要包括油气运移与聚集的全过程盆地模拟软件的支持。
本次天然气的资源评价工作引进并开发完善了IES油-气-水三相盆地模拟软件,计算的气层气地质储量达1042×108m3,比第二轮资源评价增加一倍多。
二、古热史恢复
1.原理
古热流值是盆地模拟的重要参数,其值的大小,不仅决定盆地的热史演化,而且控制其生烃过程。由于第二轮资源评价的古热流值是采用类比法确定的,影响了模拟的精度和可信度。针对此问题,开展了济阳坳陷古热流的恢复,首次定量地模拟出济阳坳陷古热流演化曲线。
目前,国内外广泛采用的热史恢复技术可归纳为三大类,即地球热力学法(正演技术)、古温标法(反演技术)和综合法(热史模拟技术)。综合法主要是将正演技术与反演技术相结合(即将地史恢复和热史恢复相结合),通过建立数学模型,利用已知的地层信息和古温标资料作为约束条件,对盆地的热演化史进行模拟。本次研究采用综合法,原理简述如下。
第一,根据傅里叶定律,由今地温梯度求某结点的今热流和地幔热流;
第二,求给定某点的古地幔热流、生热量和总热流;
第三,计算古地温;
第四,由Easy-Ro法计算古地温标 Ro;
第五,计算Ro与实测Ro的符合性检验,修改岩石圈初始拉张时的厚度,直至误差满足要求。
图1 济坳陷古热流和构造沉降演化曲线图
上述热史恢复方法可以将岩石圈尺度与盆地尺度、正演技术与反演技术有机地结合,并由参量β及古地温标(Ro)数据反演区域热流变化及其对盆地内各点的作用效果。
2.热史恢复结果及对油气生成的控制作用
由模拟出的中生代以来的大地热流演化曲线可以看出,从白垩纪早期至古新世开始时,热流达到最大值,为83.6mW/m2,相当于现今活动裂谷的热流值;从热演化的角度分析,该区大陆裂谷活动于始新世开始。始新世至现今,大地热流的总体趋势变低,中间有两次回升,较大的一次距今35Ma,另一次距今约5Ma。第三纪以来,热流演化曲线的整体形态是“马鞍型”(图1)。受热流演化和埋藏史的双重控制,下第三系烃源岩经历了持续的受热过程,现今仍处于“生油窗口”范围内。
三、油-气-水三相盆地模拟
1.天然气的生成
Ⅰ型干酪根的油气生成过程模拟结果表明,埋深大于3900~4000m(Ro≥1.0%)时开始进入游离气生气区,随气体生成量增大,逐渐高于液态烃溶解天然气的能力,气体主要以游离相态排出;埋深小于3900~4000m时,以生油和伴生的溶解气为主,天然气以溶解相态排出为主;Ⅰ型干酪根在4050~4150m进入油裂解气生气区,此时,部分液态石油
裂解成气。
在相同的热史、地史条件下,Ⅱ型干酪根在3100m左右进入游离气大量生气区,较Ⅰ型干酪根的生气区埋深浅。这也是济阳坳陷某些贫油洼陷天然气相对富集的原因。
2.天然气的运移、聚集与扩散
通过对各沉积时期天然气的流体势分布和运移方向的模拟,认为天然气的二次运移主要发生在东营组沉积末期,较油滞后,其运移方向主要受气体势分布的控制,断裂带是其最重要的运移疏导层。通过含油气饱和度分布的模拟,确定了天然气的有利聚集部位一般较油藏埋藏浅,天然气在明化镇组和第四系沉积时期成藏,模拟结果与目前气藏的实际分布情况较为吻合,为确定勘探方向提供了重要依据。
从图2可以看出,馆陶组沉积时期是其主要的烃类散失期,这是因为东营运动造成东营组与馆陶组之间存在不整合面以及馆陶组缺乏区域性良好盖层。馆陶组沉积以前,由于未进入大量生气阶段,以散失油和伴生气为主;馆陶组沉积时期,以散失油、伴生气和游离气为主;明化镇组沉积时期,以散失游离气为主。
图2 济阳坳陷部分洼陷散失烃量模拟结果示意图
四、油溶释放气成藏的定量分析
1.油溶释放气是天然气的主要来源
从中浅层气藏与稠油油藏的分布关系可以看出,液态烃从深部向中浅层运移过程中,随温度和压力的降低,液态烃组分发生分离,重质组分形成稠油油藏,轻质组分多在其上方形成中浅层气藏。如孤岛、孤东、埕东、义东、陈家庄等绝大多数气藏均具有与稠油油藏相伴生的特点,各项地球化学分析资料也已证明浅层气与稠油是同源的。
Ⅰ型干酪根的生烃模拟结果表明:生气区以上以生油和伴生的溶解气为主,天然气以溶解相态排出为主。由于济阳坳陷烃源岩的干酪根类型以工型为主,且埋深浅(最大埋深小于4400m,一般小于4000m),热演化程度低(Ro≤1.0),因此,溶解相态是济阳坳陷天然气的主要赋存相态。
从气-源岩对比结果也发现两者具有较好的亲缘关系,伴生气δ13C1的平均值为-41.80,与气藏气的平均值-42.14十分接近,证明了浅层天然气可能来自于液态烃运移过程中产生的油溶释放气。
从天然气组分含量分析结果来看,济阳坳陷天然气的甲烷含量一般大于95%,部分气田甲烷含量达到了99.0%以上,属于“干气”的范畴,但在“生油窗内”不应生成大量“干气”。这是因为不同的天然气组分在油中的溶解度是不同的。依据相似相溶原理,天然气相对分子质量越大的重烃组分在油中的溶解度越高,如在30℃、10MPa条件下,乙烷的溶解度是甲烷的4倍,丙烷的溶解度是甲烷的20倍,且压力越高倍数越大。溶解度的差异说明甲烷较其他组分更容易从油中释放或脱气,导致天然气中甲烷含量较高。地下原油在开采到地表后,释放出的轻烃组分总是以甲烷高纯度为特征,而其他组分在油中多未达到饱和。
2.油及地下水溶解天然气模型
(1)油溶解气释放模型
天然气在液态石油中的溶解度主要受控于温度、压力和原油密度,溶解度与饱和压力呈正相关关系而与原油密度呈负相关关系,当地层压力接近饱和压力时,天然气就会从油中释放出来,产生脱气作用。
(2)地层水溶解天然气模型
天然气在地层水中的溶解度主要受控于温度、压力和水的矿化度,影响最大的因素为压力。天然气在水中的溶解度随压力增高而增大,随温度的增加而降低,温度为70~100℃时溶解度达到最小值。水的矿化度对溶解度的影响也较大,并随矿化度的增大而减小。
3.油溶释放气起始脱气点的计算
溶解于油中的天然气在随游离烃向上运移过程中,由于温度、压力及原油性质的变化,气体从油中游离析出发生脱气作用,形成中浅层的次生气藏。为了确定起始脱气深度,研制了油溶释放气起始脱气点的计算程序。通过建立的油溶气模型可以看出,当地层压力等于饱和压力时,天然气在油中的溶解度可看做该温度压力条件下的最大溶解气量,可作出单位(吨)油的最大溶解气量与地层压力和原油密度关系图,并标定油气运移的轨道。通过对油气藏物性数据的分析发现,对于一个含油气盆地而言,在同一层位内,伴随流体由深到浅、由洼陷中心向边缘运移,具有地层压力逐渐降低,原油密度逐渐增高的趋势。如果把洼陷内部埋藏深、封闭条件好的岩性油气藏的气油比(一般相当于洼陷的最大油气比)近似作为洼陷的原始气油比,选取与原始气油比相等的最大溶解气量等值线与油气运移轨迹的交点,所对应的地层压力可看做现今埋深条件下油溶气起始脱气压力,对应的深度等值可看做起始脱气深度。
通过计算,济阳坳陷各主要洼陷平均起始脱气点为1900m,1750~2000m为进入起始脱气深度。
4.天然气的脱气模式与赋存状态分析
根据起始脱气深度的计算,建立了济阳坳陷主要洼陷的油溶气脱气模式。如牛庄洼陷脱气模式,随液态烃自洼陷中心向边部的运移,自洼陷中心至南斜坡地层压力逐渐降低,原油密度逐渐增大,实际气油比呈逐渐下降的趋势,在1750m左右进入起始脱气点,液态烃开始脱气,目前已探明的天然气均在起始脱气点之上,为1750~1200m,虽进入起始脱气点,但脱气作用不完全,主要以气顶气和夹层气藏为主;深度小于1200m,脱气作用较完全,以纯气层气藏为主。脱气作用形成的中浅层次生气藏,受液态烃运移最终指向的控制,分布在断裂带和凸起上;深度为3900~1750m时,天然气在油中处于欠饱和状态,以溶解气的赋存形式为主;深度大于3900m,烃源岩才开始进入生成大量游离气阶段,可形成深层原生气藏,但该类气藏目前还未经钻探证实。
通过对济阳坳陷其他洼陷的油溶气释放规律的对比分析发现,它们与牛庄洼陷具有基本相同的特征,油溶释放气的起始脱气点深度为1750~2000m,对油溶释放气形成的中浅层气藏的勘探深度应集中在埋深小于2000m的区域。
需要说明的是,起始脱气点的计算和脱气模式反映的是现今埋深条件下的状态,即现今形成的天然气才具有的脱气和成藏规律,由于济阳坳陷天然气成藏期晚,主要在距今5Ma之后开始生成和运移成藏,而且成藏作用还在进行,因此可用现今时刻的起始脱气点的计算和脱气模式近似反映天然气的赋存状态。对于成藏较早的地区不能简单套用,计算起始脱气点需要考虑主要成藏期后再沉积的厚度。
5.天然气“饱和程度”的计算与有利含气区带的预测
为了进一步探讨油溶气释放规律,提出了“饱和程度”的概念和计算方法,该方法根据试油成果获取单井在地表状态下的日产油量、日产气量和日产水量以及温度、压力和流体性质数据,恢复地下状态天然气在油水中的饱和状态。
通过“饱和程度”的分析,认为浅层气的富集主要受液态烃运移最终指向的控制,在凸起、隆起带和洼陷四周的斜坡带上以次生的气层气和部分气顶气形式存在;中层气的富集受断裂带控制,在洼陷和凸起断裂带以气顶气和夹层气等形式存在;深层气主要富集在洼陷中心或邻近洼陷中心的高部位,可能多以原生的游离相态聚集的气层气形式存在。
五、区带资源量计算方法
1.二、三维盆地模拟相结合的方法
表1 济阳坳陷区带天然气资源量计算表
根据各凹陷三维盆地模拟结果,计算气层气供气量,再乘上聚集系数得出气层气资源量;根据IES模拟结果,可知单条测线在不同区带的天然气聚集量,再进行面积加权和地质分析,综合确定各含气区带的聚集量百分比,即可计算出各区带的气层气资源量。
2.地质综合评价法
(1)划分天然气排聚单元
排聚单元是以聚集区为核心的天然气排运聚散系统,依据IES模拟的流体运移方向和古气势场分布,将济阳坳陷划分为14个排气单元。
(2)计算各排聚单元供气量
在排聚单元划分的基础上进行盆地模拟,计算不同生油洼陷向各排聚单元的供气量。
(3)计算区带气层气资源量
依据模糊评判原理,对区带的气源丰度、疏导层条件、气源距离、保存条件等进行综合评判,确定各区带聚集系数,计算气层气资源量(表1)。
六、应用效果
根据本次天然气区带资源评价结果,选择具有较高资源潜力的区带进行了亮点勘查和钻探,发现一批较有利的含气圈闭和亮点,建成了天然气产能20×104m3,取得了较好的经济效益和社会效益。
1.坨-胜-永断裂带
坨-胜-永断裂带位于东营凹陷北部,北邻陈家庄凸起,东靠青坨子凸起,西南与利津、民丰洼陷相接,在研究区呈北西向带状分布,有利勘探面积近700km2,由于该断裂带紧邻利津、民丰生油洼陷,具备有利的油气成藏条件。该带自1965年勘探以来,相继发现了一批中浅层气藏。根据区带资源评价结果,坨-胜-永断裂带及陈家庄凸起南缘天然气资源量为110×108m3,探明天然气储量36.1×108m3,剩余资源量为74×108m3。1998~2000年,该区加强天然气勘探,丰气1、丰气斜101、永12-53井相继钻探成功,新建天然气产能9.5×104m3;2001年,在胜北断层二台阶又发现了一批浅层气富集区,预测含气面积24km2,预测天然气地质储量20×108m3。
2.义南地区
义南地区位于义和庄凸起南部,南、东两面与沾化凹陷相邻,自东向西,义南断层由北东向转为近东西向,形成一弧状构造带。义和庄凸起为下古生界寒武—奥陶系灰岩组成的潜山。油气勘探始于1961年,1971~1973年发现馆陶组气藏。经过20多年的勘探,共发现三个含气区,即沾3-沾38、沾4及沾5井区,主力含气层系为东营组、馆陶组、明化镇组。根据本次区带资源评价结果,义和庄凸起及周缘天然气资源量为79×108m3,探明天然气储量11.15×108m3,剩余资源量68×108m3,该区带仍具有较大的资源潜力。1999~2000年,该区天然气勘探发现Ⅰ、Ⅱ类亮点45个,预测含气面积22.4km2,天然气地质储量24.35×108m3;共部署井位11口,试气见气流井9口,新建天然气产能8.0×104m3。