sinθ+sin2θ+sin3θ+sin4θ+……+sinnθ=?

2025-04-16 05:33:27
推荐回答(2个)
回答1:

2sinθsin(θ/2)=cos(θ/2)-cos(3θ/2)
2sin2θsin(θ/2)=cos(3θ/2)-cos(5θ/2)
2sin3θsin(θ/2)=cos(5θ/2)-cos(7θ/2)
2sin4θsin(θ/2)=cos(7θ/2)-cos(9θ/2)
……
2sinnθsin(θ/2)=cos(nθ-θ/2)-cos(nθ+θ/2)
相加得到,
2sin(θ/2)[sinθ+sin2θ+……+sinnθ]=cos(θ/2)-cos(nθ+θ/2)
∴ sinθ+sin2θ+……+sinnθ
=[cos(θ/2)-cos(nθ+θ/2)]/[2sin(θ/2)]

回答2:

最后等于0