二重积分的性质怎么计算

2024-12-04 17:34:53
推荐回答(1个)
回答1:

性质1
函数和(差)的二重积分等于各函数二重积分的和(差),即
∫∫[f(x,y)±g(x,y)]dσ=∫∫f(x,y)dσ±∫∫g(x,y)dσ
性质2
被积函数的常系数因子可以提到积分号外,即
∫∫kf(x,y)dσ=k∫∫f(x,y)dσ
(k为常数)
性质3
如果在区域D上有f(x,y)≦g(x,y),则∫∫f(x,y)dσ≦∫∫g(x,y)dσ
推论
∣∫∫f(x,y)dσ∣≦∫∫∣f(x,y)∣dσ
性质4
设M和m分别是函数f(x,y)在有界闭区间D上的最大值和最小值,σ为区域D的面积,
则mσ≦∫∫f(x,y)dσ≦Mσ
性质5
如果在有界闭区域D上f(x,y)=1,
σ为D的面积,则σ=∫∫dσ
性质6
二重积分中值定理
设函数f(x,y)在有界闭区间D上连续,σ为区域的面积,则在D上至少存在一点(ξ,η),使得
∫∫f(x,y)dσ=f(ξ,η)●σ