∵a1=2,a1、a3、a13 成等比数列,∴(2+2d)2=2(2+12d).得d=4或d=0(舍去),∴an =4n-2,∴Sn=2n2,∴ Sn+16 1 2 an+3 = 2n2+16 2n+2 .令t=n+1,则 2Sn+16 an+3 =t+ 9 t -2≥6-2=4当且仅当t=3,即n=2时,∴ 2Sn+16 an+3 的最小值为4.故选:A.