设M(x1,y1,z1)是准线上一点,而准线是二平面x+y+z=0,x^2+y^2+z^2=1的交线, 故x1+y1+z1=0,(1) x1^2+y1^2+z1^2=1,(2) 母线方向数为(1,1,1), 经过M点的母线为:(x-x1)/1=(y-y1)/1=(z-z1)/1=t, 则参数方程为: x1=x-t, y1=y-t, z1=z-t, 代入(1)和(2)式, x-t+y-t+z-t=0, t=(x+y+z)/3,(4) (x-t)^2+(y-t)^2+(z-t)^2=1,(5) 由(4)代入(5)式, (2x-y-z)^2/9+(2y-x-z)^2/9+(2z-x-y)^2/9=1, ∴柱面方程为:(2x-y-z)^2+(2y-x-z)^2+(2z-x-y)^2=9.