偏导数连续是可微的充分不必要条件
二元函数连续、偏导数存在、可微之间的关系 1、若二元函数f在其定义域内某点可微,则二元函数f在该点偏导数存在,反过来则不一定成立。2、若二元函数函数f在其定义域内的某点可微,则二元函数f在该点连续,反过来则不一定成立。3、二元函数f在其定义域内某点是否连续与偏导数是否存在无关。4、可微的充要条件:函数的偏导数在某点的某邻域内存在且连续,则二元函数f在该点可微。 上面的4个结论在多元函数中也成立