函数在闭区间上连续,函数的极限存在,函数在x0的某一邻域内有界。
反证法:
设函数f(x)在闭区间[a,b]连续,函数在[a,b]无界。
将[a,b]划分为[a,a+b/2][a+b/2,b],设函数在[a,a+b/2]无界(函数不可能在两个闭区间有界),设a=a1,a+b/2=b1。
将[a1,b1]划分为[a1,a1+b1/2][a1+b1/2,b1],设函数在[a1,a1+b1/2]无界,设a1=a2。
a1+b1/2=b2。
.....
得到{[an,bn]}。
f(x)在 {[an,bn]} 无界,∃ ξ ∈[an,bn],且lim(n->∞)an=lim(n->∞)bn= ξ。
由于ξ ∈[an,bn],即ξ ∈[a,b],f(x)在ξ的某一邻域内极限存在,即∃常数M>0和δ >0,使得当x∈U( ξ,δ)∩[a,b]成立时,有|f(x)|≤M。 (函数极限的局部有界性)
当n充分大时,[an,bn]∈U( ξ,δ)∩[a,b],与假设矛盾。
所以函数f(x)在[a,b]连续,f(x)在[a,b]有界。
1、函数在闭区间上连续,函数的极限存在,函数在x0的某一邻域内有界(函数极限的局部有界性)
2、证明:
反证法:
设函数f(x)在闭区间[a,b]连续,函数在[a,b]无界
将[a,b]划分为[a,a+b/2][a+b/2,b],设函数在[a,a+b/2]无界(函数不可能在两个闭区间有界),设a=a1,a+b/2=b1
将[a1,b1]划分为[a1,a1+b1/2][a1+b1/2,b1],设函数在[a1,a1+b1/2]无界,设a1=a2,a1+b1/2=b2
......
得到{[an,bn]}
f(x)在 {[an,bn]} 无界,∃ ξ ∈[an,bn],且lim(n->∞)an=lim(n->∞)bn= ξ
由于ξ ∈[an,bn],即ξ ∈[a,b],f(x)在ξ的某一邻域内极限存在,即∃常数M>0和δ >0,使得当x∈U( ξ,δ)∩[a,b]成立时,有|f(x)|≤M (函数极限的局部有界性)
当n充分大时,[an,bn]∈U( ξ,δ)∩[a,b],与假设矛盾。
所以函数f(x)在[a,b]连续,f(x)在[a,b]有界。
既然闭区间,区间每个x都能取到,都有对应的值。既然都有值,在区域就有最大最小值,就会有界。
不连续的函数如何讨论?什么值都有可能
比如1/x,在[-1,1]区间内,0点左右分别是正负无穷大