点M到焦点的距离a=Ym+p(焦半径公式的变形,学习的是y^2=2px,公式为x0+p/2,x^2=2py,公式为y0+p/2,这里再把p改成2p)解得 Ym=a-p 代入x^2=4py 解得 x=±√[p(a-p)]
所以M的坐标为(±√[p(a-p)],a-p)
焦点F(0,p),准线y=-p
M(x,x^2/4p)
x^2/4p+p=a
x=±2√[p(a-p)]
y=a-p
M的坐标(2√[p(a-p)],a-p)或(-2√[p(a-p)],a-p)
设点M(x,y)
焦点C(0,p)
|MC|^2=x^2+(y-p)^2=a^2 .......①
因为 x^2=4py ........②
由①②解得x=√(4aq-4p^2 ),y=a-p
即点M(√(4aq-4p^2 ),a-p)