四阶行列式的完全展开式共有多少项

2025-04-13 23:49:45
推荐回答(2个)
回答1:

四阶行列式的完全展开式共有24项!过程如下:

1、四阶行列式展开,共有4个不同的三阶行列式;

2、按【行列式展开定理】,4阶行列式展开成低一阶的三阶行列式时,有四个分行列式;继续【展开】下去,每个3阶行列式可以【展】成3个2阶行列式;每个2阶行列式可以【展】成2项.所以全部展开后共有 4!=24项——和定义描述的相同!
D4=a11A11+a12A12+a13A13+a14A14
=a11M11-a12M12+a13M13-a14M14

拓展资料:

1、按照一定的规则,由排成正方形的一组(n个)数(称为元素)之乘积形成的代数和,称为n阶行列式。

例如,四个数a、b、c、d所排成二阶行式记为

 ,它的展开式为ad-bc。

九个数a1,a2,a3;b1,b2,b3;c1,c2,c3排成的三阶行列式记为

 ,它的展开式为a1b2c3+a2b3c1+a3b1c2-a1b3c2-a2b1c3-a3b2c1。

2、行列式起源于线性方程组的求解,在数学各分支有广泛的应用。在代数上,行列式可用来简化某些表达式,例如表示含较少未知数的线性方程组的解等。

参考资料来源:百度百科:n阶行列式

回答2:

四阶行列式的展开项有24项。

4阶行列式展开成低一阶的三阶行列式时,有四个分行列式;继续展开下去,每个3阶行列式可以展成3个2阶行列式;每个2阶行列式可以展成2项.所以全部展开后共有 4!=24项——和定义描述的相同!

D4=a11A11+a12A12+a13A13+a14A14=a11M11-a12M12+a13M13-a14M14

D4=a11a22a33a44-a12a23a34a41+a13a24a31a42-a14a21a32a43+a41a32a23a14-a42a33a24a11+a43a34a21a12-a44a31a22a13+a11a23a34a42-a13a24a32a41+a14a22a31a43-a12a21a33a44+a41a33a24a12-a43a34a22a11+a14a32a21a13-a42a31a23a14+a11a24a32a43-a14a22a33a41+a12a23a31a44-a13a21a34a42+a41a34a22a13-a44a32a23a11+a42a33a21a14-a43a31a24a12

拓展资料:

行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

参考资料:百度百科——行列式