已知f(x)=ln[(x²+1)/(x²-2)],且f[φ(x)]=x²,求φ(x)及其定义域解:设 φ(x)=u,则f[φ(x)]=f(u)=ln[(u²+1)/(u²-2)]=x²;即(u²+1)/(u²-2)=e^(x²); u²+1=(u²-2)e^(x²); [e^(x²)-1]u²=1+2e^(x²);故u²=[1+2e^(x²)]/ [e^(x²)-1];∴φ(x)=u=±√{[1+2e^(x²)]/ [e^(x²)-1]}; 定义域:x≠0;
请