我们数学老师让写个“数学小论文”,比如生活中的数学。各位高人说说该咋写,写论文是不是还有格式?多谢

一定帮我
2024-12-05 01:23:27
推荐回答(4个)
回答1:

合理利用资源 发挥最佳效益

记得是星期六的一天早上,爸爸带我去看望爷爷奶奶,爷爷奶奶生活在农村,生活来源主要靠养鸭为生,平时爷爷奶奶就吃住在鸭场,我到了爷爷奶奶处,免不了要看鸭舍,喂鸭子。鸭场沿河沟而建,其余三面是栅栏,围成一个长方形。我向爷爷喂鸭场地为什么不建成正方形而建成长方形,我还对爷爷说,‘我们老师说过,栅栏的长度一样时,围成的正方形面积要比长方形的面积要大,’爷爷笑呵呵地对我讲,‘你说的情况与我们这个喂鸭场地的情况不一样,你看我的这个场地,一面利用水沟围,三面利用栅栏围,不是四面,’接下我天真地说,‘水沟长着呢,为什么不围更长一些呢,那样面积不就更大了吗?’爷爷说,‘这就不一定了,’爷爷说,‘萍萍呀,听说你们已经学过长方形和正方形的面积计算了,今天正好我来考考你,我这个喂鸭场地,三面栅栏共长40米,你想想看我们这个喂鸭场的面积最大可以围成多大呢?’

带着问题,我陷入深深的思考中,我采用列举的方法,推想:假设宽1米,长是38米,面积就是38平方米;宽2米,长是36米,面积就是72平方米,逐步列举…宽10米,长20米,面积是200平方米;再往下逐步推算面积,面积又逐步减少,另外我又列举了其他的数加以证实看看有什么特点,我从中摸索了这样一个规律,象这样利用一边是河沟围成的长方形面积比正方形面积大,也不是长越长面积越大,而是长的长度是两条宽的和时面积最大。带着成功的喜悦,我跟爷爷说,‘爷爷呀,你考我的问题,我想了一下,不知道对不对,’爷爷让我讲讲看,我说这个喂鸭场地面积最大是200平方米。爷爷高兴地说,‘一点都不错,我孙女是好样的。’

从这个实例中,我感受到,在实际生活中,只有合理地科学地利用资源,才能发挥最大的效益,从中我也感受到,数学会给人们带来智慧创造财富,可以说是,生活中处处包含着数学,生活中处处离不开数学。

切 西 瓜

炎热的夏天,西瓜便成了一种解渴的水果.这天小明的妈妈买了一个大西瓜回家.她准备考一考小明.她问小明:“怎么样切西瓜切出9片只用4刀?”这个问题难倒了小明,他拿出一个张纸一个铅笔,画呀画,怎么也不知道怎么切.他实在想不出方法,便去问妈妈答案是什么?妈妈笑了笑说:“用井字切法呀!”说完用刀切西瓜给小明做了一个示范。

小明明白了,拿着一片大西瓜津津有味的吃了起来。这时妈妈又问:“用4刀切8片呢?”小明动了动脑筋,自豪地说用米字切法.妈妈夸他是个好学生。

只用动动脑筋,世界上没有什么事可以难住你的。

单价是多少

我和好朋友王心怡一起出去买东西。

来到琳琅满目的商店,我和王心怡直奔文具区。我在商店里买了4块橡皮和3把小刀,共付6.05元;王心怡买了同样的2块橡皮和3把小刀,共付4.45元。买完后,我想考考王心怡,便问她:“你知道一块橡皮和一块小刀的单价吗?”王心怡想了想,便回答说:“一块橡皮0.8元,一把小刀0.95元。”“你光把答案算出来了,过程呢?”这可把王心怡难住了。王心怡过了一会儿对我说:“你等一会儿,我马上想想!”“我来算吧!很简单哦!”我胸有成竹的对王心怡说。“哦?你会?那你先来算算!”王心怡说。

我胸有成竹的对王心怡解释:“4块橡皮和3把小刀共付6.05元,2块橡皮和3把小刀共付4.45元。通过两组条件的对比,可以发现我比你多付6.05-4.45=1.60(元),是因为我比你多买了两块同样的橡皮,可用下列竖式来表示:

4块橡皮的价钱+3把小刀的价钱=6.05元

— 2块橡皮的价钱+3把小刀的价钱=4045元

2块橡皮的价钱 =1.60元

从而找到下列解法:

解:

(6.05-4.45)÷(4-2)

=1.6÷2

=0.8(元) ……… 橡皮的单价

(4.45-0.8x2)÷2

=2.85÷3

=0.95(元) ……… 小刀的单价

你会了吗?王心怡?”

“嗯!我会了!原来我们生活中有这么多数学,看来要把数学学好才行啊!我一定会努力学习的!”王心怡发奋图强说。我说:“我一定要探究数学中的奥秘!加油!”然后,我和王心怡就拿着自己的“战利品”回家了。

妹妹的年龄

其实,生活中处处都是数学,处处都与数学有关。只要我们肯观察,就会发现数学非常奇妙。

星期一傍晚,我正在温习数学和奥数。我突然想起妹妹的生日,在那里喃喃自语:“妹妹的年龄好象是6岁,又好象是5岁,到底是几岁呀?”我便决定去问妈妈。我走进妈妈的房间,好奇的问:“妈妈妹妹今年几岁呀?”妈妈顽皮地说:“聪明的宝贝,让我来考考你吧!”我要强的大声叫道:“考就考!谁怕谁?”妈妈开始一本正经的准备说了:“我给你一些条件,算出妹妹的年龄。你的外公比你的舅舅大26岁,你的舅妈比妹妹大26岁。妹妹一家今年一共126岁,而5年前妹妹一家一共107岁。亲爱的小宝贝快来算一算吧!”

不一会儿,我就将妹妹的年龄算出来了!我学着数学老师的样子,对妈妈说:“看着我的眼睛,妹妹呢她是4岁”妈妈又反问到:“宝贝你能算出外公,舅舅和舅妈的年龄吗?”“哈哈哈,早知道你会留一手,我是何等的聪明,不过我没留那么一手。”我笑着说。之后,妈妈暴笑了半天。过了一会儿,我又算出了答案说:“妹妹的爸爸是33岁,舅妈是30岁,外公是59岁。”妈妈夸我是个聪明的孩子。

亲爱的同学们,你们算出来了吗?在数学中,算年龄的一类问题叫做<<年龄问题>>。刚才我所算出来的思路是:一家四口,一个人5年应长大5岁四个人5年一共20岁,因此现在和5年前应相差20岁。而一家四口现在的和126岁减5年前的和107岁却是19岁,说明5年前有一个人还不在这个家,只有可能是妹妹。所以妹妹的年龄是5-1=4岁,舅妈的年龄自然就是4+26=30岁。舅妈的年龄加上妹妹的年龄与现在的总年龄126岁相减。就能算出舅舅和外公的年龄和,外公比舅舅大26岁,减去26岁,外公和舅舅的年龄就相等了。在除以2就算出舅舅的年龄,66除以2等于33岁,就是舅舅的年龄。外公的年龄就等于33+26岁,就等于59岁。其实,就这么简单。

生活离不开数学,数学离不开生活。因此我们要多多观察,多多学习,多多思考。

月饼盒的学问

今年国庆节,老师布置了一个特殊的作业:中秋节前带张白纸和家人一起到超市看月饼。

我怀着一颗好奇的心情,长假第一天就拉着妈妈到超市去。月饼销售区的月饼竟然有上百种,看得我目不暇接,唯一感叹:包装月饼的大礼盒太精美了!厂家一定在这上面花了很多心思。其它我就看不出有什么名堂,老师究竟让我们看什么呢?我疑惑地把所有月饼又细细观察一翻,发现各个大礼盒里面小月饼盒大多数是6个,8个装的,且都是分两行摆设布置。我指着月饼大礼盒问妈妈:“怎么里面的小盒子都摆成两行呢,为什么不放成一行呢?”“有什么感到奇怪的呢,这样设计不就是为了美观嘛!”妈妈笑着说。在妈妈的笑声中,我的脑海里闪出火柴盒的包装,难道这样设计也是为了节约纸的材料?那就来算算看,老师叫带的纸发挥作用了,然后我就请妈妈帮我到文具销售区找来笔和尺,量了一盒月饼大礼盒的长40厘米,宽28厘米,高4厘米,得出表面积(40×28+40×4+28×4)×2=2784平方厘米。如果里面的小月饼盒排布成一行,大礼盒长就是80厘米,宽14厘米,高4厘米,表面积是(80×14+80×4+14×4)×2=2992平方厘米。我恍然大悟,原来设计者是考虑到节约材料啊!我把我的发现告诉了妈妈,妈妈会心地说:“原来这样设计不仅是为了好看啊!看来你还真会学以致用啊!”

我很高兴,更来了探究的兴致,边思索边把这个大礼盒里面的两排小月饼盒垒起来,变成两层高。妈妈立刻制止我的这一举动:“会把下面一层装月饼的包装盒压了变形的。”“这样放,大礼盒的包装纸只要(40×14+40×8+14×8)×2=1984平方厘米,就更节约外包装纸了。”我不解地对妈妈说。妈妈点点头,打开其中一个月饼的小包装盒。一个小小的月饼躺在里面,小月饼盒容积比月饼的体积大多了,原来设计者用空余空间来充当小月饼,是月饼盒子容积大里面月饼小啊!那当然是不能把它们堆成两层,真的会压坏小月饼盒的。细细一比较:少用点做月饼的原料总比多用点外包装纸花的成本要低,我不得不佩服设计者的精心设计。

嘿嘿!原来身边处处都可能藏着数学,关键是我们是不是拥有一双会发现的眼睛。

我的推理

在古代,古人通过在麻绳上打结或用摆石子、划线的方法计数来分配所打的猎物,后来慢慢演变成了今天的数学。数学来源于生活,也应用于生活。生活中处处都有数学,许多问题都是通过数学的方法来解决的。

国庆前夕,派出所的警察叔叔来给我们上法制教育课。在这节课上,警察叔叔给我们讲了一个案例。一次,他们抓到了四个偷窃嫌疑犯:甲、乙、丙、丁。在他们的供词中,只有一个人说的话是真的。甲说:“不是我偷的。”乙说:“就是甲偷的。”丙说:“反正我没偷。”丁说:“是乙偷的。”这四个人中,到底谁是真正的小偷呢?听了这个案例,大家都七嘴八舌地议论开了,答案各不相同。警察叔叔说:“这个问题看似复杂,其实很简单,只要大家运用你们所学的假设法就可以解决,找到真正的小偷。”于是,我仔细地分析了这四个人的话,做了如下的假设:

第一种情况:假设甲是小偷。那么甲说的是假话,乙说的是真话,丙说的也是真话,而丁说的就是假话。

第二种情况:假设乙是小偷。那么甲说的是真话,乙说的是假话,丙说的是真话,丁说的也是真话。

第三种情况:假设丙是小偷。那么甲说的是真话,乙说的是假话,丙说的是假话,丁说的也是假话。

第四种情况:假设丁是小偷。那么甲说的是真话,乙说的是假话。丙说的是真话,丁说的是假话。

通过分析,只有第三种情况符合,由此可以判断丙就是小偷。

警察叔叔听了我的分析,高兴地夸奖我是未来的小侦探,我的心里乐滋滋的!

生活无处无数学!数学,就像一座直插云霄的山峰,只有真正喜欢它的人才会有勇气去征服它!去攀登它!同学们,让我们行动起来吧,做勇敢的登山人!

秋游中的数学

在实际生活中的其实有许多数学问题,许多熟悉的数学知识都可以运用在生活中,就像老师说的“数学就在自己身边、身边到处存在着数学问题”。很多时候,生活中的数学比课堂上的数学更加生动有趣,不像书本上的数学枯燥无味。在生活中能够用所学的数学知识去解答问题能使我更加热爱数学,更加主动地去学习数学。
秋游是一件快乐的事情。在秋游前老师提出的问题,“要去秋游了,你们想做的第一件事是什么?”我们都异口同声的说明:“到商店去买吃的!”于是,一场别开生面的购物方案设计开始了。我们兴趣盎然,纷纷设计着方案,计算着钱数。在有趣的活动中体验着数学的价值和学习的乐趣。当秋游购物方案设计在我们的兴奋之中落下帷幕时,老师又说:“同学们,你们为秋游购物作出了不同方案的选择,其实,大家说的、做的、算的都离不开两个字,那就是“数学”!我恍然大悟,原来数学就在我们的身边,生活中处处有数学。

老师又提出问题:“如果你是一个旅行家,有500元要到三个旅游点去旅游,怎么样安排可以既经济又实惠。”当星期一在课堂上讨论这题时,我们都很兴奋。因为我们利用双体日,有的去旅行社询问旅游价格;有的打电话询问火车与轮船的价格;有的询问住宿的价格;……。这些都是我们平时从不关心的问题,但现在却成了我们交谈的热点。有时我们在具体讨论线路时,常常为线路的合理与价格的优惠而争得面红耳赤。在这一活动中,我们不仅要将已学应用题知识应用到实际中去,又要考虑实际生活中的各种问题,不仅提高了自己解决简单问题的能力,同时也让我们能从中了解了社会。

老师曾说过要体会“数学之美”,是的在数学中我们发现了数学的严密之美,感受到数学图形的对称之美,更体会到生活中数学的无处不在,能够把所学的知识应用到生活中能够学有所用让我真正发现了数学的美。

瓦屋的秘密

我有许多秘密,说个给你听听——瓦房的秘密,嘿嘿,失望吧?我的秘密保密。

瓦房的秘密是我在前些日子发现的,学校组织我们六年级学生到横溪秋游。让同学们认识大棚里许多反季节的蔬菜,还亲身体验了劳动的辛苦。劳动过后,大家在一起小憩时发现了一间又老又旧的瓦房。屋里有好多我们从未瞧见过的旧物,从标签上我们才知道了它们的名称:土灶,竹碗橱,木制织布机,木踏,凤凰床……我们觉得一切都是那么新奇,摸摸这,摸摸那。这时,我看见老师抬着头在朝屋顶上看,我的好奇心也想看个究竟:屋内顶不是平的,是用木头和柴帘搭成。这怎么能撑得住屋外顶上的瓦呢?

“大家快出去,这屋顶不安全!”我慌忙地叫道。大家也惊慌起来,不知所措。

老师安抚大家说:“同学们,不要慌,屋顶现在不会塌的,屋顶上的木头还完好无损呢?”

“老师,木头好好的也不一定就能撑得住啊?”我不解地说。

“大家仔细看看中间的木头是怎么搭的?”同学们听了老师的话,一个个都睁大眼睛向上看去,并异口同声地说:“三角形。”

“对,三角形。三角形具有稳定性,因此屋顶不易变形,安全性也就高了。对吧,老师?”我不禁问道。

“建筑者就是充分利用三角形这一稳定性,来加强屋顶的稳固性的。”

原来瓦屋保存到现在的秘密就在这儿啊!

细细观察我们还会发现:自行车的脚撑,空调室外机的安装等等都是利用三角形的稳定性,是三角形给它们投了一份份不易倒塌的安全保险。数学的作用还真不小,它与我们的生活形影不离,我可得努力学好数学,让生活更丰富多彩。

奇妙的图形密铺

在生活中,我们常常会在生活中遇见数学.如窨井盖为何是圆形?伸缩门为什么是平行四边形等等。今天,我要给大家举一个图形密铺的例子。

丽丽搬新家了,她见她家的地砖有的是长方形,有的是正方形,有的是三角形,可是却没有漂亮的三角形,这是为什么呢?原来是因为长方形和正方形的四个角合起来是一个360度的,可以平铺在一起来,没有漏缝,而圆形它没有角度,所以不可以密铺.聪明的蜜蜂会做一个美丽的房子-----用六边形拼的房子,.因为六边形的一个内角是60度,所以1个六边形便可以密铺.

图形密铺如此奇妙使家变得更美丽.生活中我们还会遇见更多的生活中的数学,希望大家去观察,去发现,去思考.

回答2:

学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。

回答3:

以下资料,自己整理

动物数学
气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢?

这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。

这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。

参考资料:阿草的葫芦(下册)——远哲科学教育基金会
2、动物中的数学“天才”

蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。

丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?

蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。

冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。

真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。

抽屉原理和六人集会问题

“任意367个人中,必有生日相同的人。”

“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”

“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”

......

大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为:
“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。”
在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。
抽屉原理的一种更一般的表述为:
“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”
利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:
“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
1958年6/7月号的《美国数学月刊》上有这样一道题目:
“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”
这个问题可以用如下方法简单明了地证出:
在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。
六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。

回答4:

上网求助也么用,就算不会被揭发,良心也会遭到谴责,最后还是会害了你自己!何尝不自己试试呢,就算写不好也没关系,毕竟是靠自己的汗水&心血完成的!