1)
1/x+1/y+1/z
=1²/x+1²/y+1²/z²
≥(1+1+1)²/(x+y+z)
=3²/3
=3,
故所求最小值为:3.
(2)x^2+y^2+z^2
≥(x+y+z)^2/(1+1+1)
=3;
9-(x^2+y^2+z^2)
=(x+y+z)^2-(x^2+y^2+z^2)
=2(xy+yz+zx)
>0,
∴x^2+y^2+z^2小于9
(1)
1/x+1/y+1/z
=1²/x+1²/y+1²/z²
≥(1+1+1)²/(x+y+z)
=3²/3
=3,
故所求最小值为:3.
(2)
x²+y²+z²
=x²/1+y²/1+z²/1
≥(x+y+z)²/(1+1+1)
=3²/3
=3,
左边得证.
又,x、y、z∈R+,即xy+yz+zx>0.
∴x²+y²+z²-9
=x²+y²+z²-(x+y+z)²
=-2(xy+yz+zx)