已知m方减n方等于mn,求n方分之m方加m方分之n方的值

2024-11-27 20:36:26
推荐回答(3个)
回答1:

已知m^2-n^2=mn
求m^2/n^2+n^2/m^2
通分得m^4+n^4/m^2n^2

而m^4+n^4
=m^4-2m^2n^2+n^4+2m^2n^2
=(m^2-n^2)^2-2m^2n^2
=(mn)^2-2m^2n^2
=-m^2n^2

所以原式=(-m^2n^2)/(m^2n^2)
=-1

回答2:

据题目得
m^2=n^2+mn
n^2=m^2-mn

代入原式=(n^2+mn)/n^2+(m^2-mn)/m^2
上下同时除以分母
原式=2+m/n-n/m=2+(m^2-n^2)/mn=2+mn/mn=3

回答3:

(1/3)^(-m)=2,(3^(-1)^(-m)=2,3^m=2
1/3^n=5,3^n=1/5
9^(2m-n)=(3^2)^(2m-n)=3^(4m) / 3^(2n) = (3^m)^4 / (3^n)^2 = 2^4 / (1/5)^2 =16*25=400