如图,AB∥CD,BE、CE分别是∠ABC、∠BCD的平分线,点E在AD上,BE的延长线交CD的延长线于F.求证:BC=AB+CD.
分析:先证明△FCE≌△BCE,再证明△AEB≌△DEF,得出AB=FD,根据△FCE≌△BCE可得出BC=FC,从而可证明BC=AB+CD.
解答:证明:∵CE是∠BCD的平分线,∴∠BCE=∠FCE,
∵AB∥CD,∴∠F=∠FBA,∵BE是∠ABC的平分线,
∴∠ABF=∠FBC,∴∠FBC=∠F,又CE=CE,
∴△FCE≌△BCE,∴EF=BE,BC=FC,
又∵∠DEF=∠AEB,EF=BE,∠F=∠FBA,
∴△AEB≌△DEF
∴AB=FD,
∴FC=AB+CD,
∵BC=FC,
∴BC=AB+CD.
http://hi.baidu.com/youxianai/album/item/46471dc4e3b28bcf8326acda.html#