由正弦定理得
AC/sinB=BC/sinA
sinA=BC*sinB/AC
sinA=7*(4 √3)/7/8
sinA= √3/2
A=60
在锐角三角形ABC中
sinB=(4 √3)/7
sin^2B=48/49
cosB=√1-sin^2B
cosB=√1-48/49
cosB=1/7
AB/sinC=BC/sinA
AB=BC*sinC/sinA
AB=7*sin(180-60-B)/ (√3/2)
AB=7*(sin120cosB-cos120sinB)/ (√3/2)
AB=7*(√3/2*1/7+1/2*(4 √3)/7)/ (√3/2)
AB=(√3/2+2 √3)/ (√3/2)
AB=(5√3/2)/ (√3/2)
AB=5