F(x)=3分之一ax3方-ax平方+3x+1当a=3时 有:f(x)=x^3-3x^2+3x+1当x=0时有:f(0)=1f'(x)=3x^2-6x+3 即:f'(0)=3所以f(x)在x=0处的切线为:y=3(x-0)+1=3x+1若f(x)在(正∞,负∞)上单调递增 则有:f'(x)>0 可得:f'(x)=ax^2-2ax+3>0 则有当a>0 且 △<0 时f'(x)>0 恒成立可得:4a^2-12a<0解得:0
f(x)=1/3ax^3-ax^2+3x+1a=3时,f(x)=x^3-3x^2+3x+1f'(x)=3x^2-6x+3切线的斜率k=f'(0)=3f(0)=1即切点坐标是(0,1)故切线方程是y-1=3x,即y=3x+1(2)f'(x)=ax^2-2ax+3.f(x)在R上单调递增,则说明在R上f'(x)>=0恒成立.即有:a>0,判别式=4a^2-4a*3=<04a(a-3)=<0解得:0
F'(x)=x^2-2ax+3当X=0时,F'=3,F(0)=1,切点为(0,1)切线方程为:y=3x+1f(x)在(正∞,负∞)上单调递增,那么F'(x)=x^2-2ax+3≥0∴a^2≤3a∈(-√3,√3)