分析,本题考查全微分解:令:v=√(x²+y²+z²),则原函数为:u=f(v)根据多元函数全微分:du=(∂f/∂v)·[(∂v/∂x)dx+(∂v/∂y)dy+(∂v/∂z)dz]∂f/∂v = f'∂v/∂x=(1/2v)·2x=x/[√(x²+y²+z²)]∂v/∂y=y/[√(x²+y²+z²)]∂v/∂z=z/[√(x²+y²+z²)]∴du=f'(xdx+ydy+zdz)/[√(x²+y²+z²)]