(1)
a4/a1=q^3=16/2=8
q=2
an=a1q^(n-1)=2×2^(n-1)=2^n
n=1时,a1=2^1=2,同样满足。
数列{an}的通项公式为an=2^n
Sn=2(2^n -1)/(2-1)=2^(n+1) -2
(2)
b16=a3=a1q^2=2×4=8 b4=a5=a3q^2=8×4=32
b16-b4=12d=8-32=-24
d=-2
b1=b4-3d=32-3(-2)=38
bn=b1+(n-1)d=38-2(n-1)=40-2n
数列{bn}的通项公式为bn=40-2n
a4=16等比数列
a1*q&3=16
a1=2
q=2
an=2&n
sn=2&n+1-2
等差数列bn
b16=a3=8 1>
b4=a5=32 2>
1>-2>
12d=-24
d=-2
b1=32-3d=38
bn=40-2n
(1) 设等差数列{an}的公比为q
q^3 = a4/a1 = 8得q = 2,通项公式为an = 2^n,前n项和S=2(2^n -1)/(2-1)=2^(n+1) -2
(2) a3 = 2^3 = 8 = b16, a5 = 2^5 = 32 = b4
则等差数列{bn}的公差为d = (b16-b4)/12 = -2
通项公式bn = 40-2n
an=2^n sn=2^(n+1)-2 bn=41.6-2.4*n