a1=1/2=1/(1×2),
a2=1/6=1/(2×3),
a3=1/12=1/(3×4)
……
猜测 n≥2时
an=1/[n(n+1)]
a(n-1)=1/[(n-1)n]
因为,a(n-1)+a(n)+a(n+1)=3/[(n-1)(n+2)]
所以,a(n+1)=3/[(n-1)(n+2)]-1/[(n-1)n]-1/[n(n+1)]
=1/[(n+1)(n+2)]
猜测成立
n=1时,满足通项
所以,an=1/[n(n+1)]
an=1╱n2+n