设z=f(x,y)=arctanx⼀y,y=√x^2+1,求δf⼀δx及dz⼀dx

2025-04-13 23:25:38
推荐回答(1个)
回答1:

δf/δx=1/(1+(x/y)²)* 1/y=y/(x²+y²)
δf/δy=1/(1+(x/y)²)* (-x/y²)=-x/(x²+y²)
y'=x/√x^2+1
所以
dz/dx=δf/δx+δf/δy*y'
=y/(x²+y²)-x/(x²+y²)* x/(√x^2+1)
=1/(x²+y²)*【y-x²/(√x²+1)】