已知函数F(x)=2根号3sinxcosx-2cos^2x+2(1)求F(x)的单调递增区间

2024-12-04 02:05:03
推荐回答(2个)
回答1:

F(x)=2根号3sinxcosx-2cos^2x+2
=√3 sin2x-(2cos^2x-1)+1
=√3 sin2x-cos2x+1
=2(√3/2 sin2x-1/2cos2x)+1
=2(sin2x *cosπ/6-sinπ/6*cos2x)+1
=2sin(2x+π/6)+1

F(X)是将sinx的周期缩小一半,在向左平移了π/6个单位,然后在向上平移1个单位

其单调区间和sinx的类似,
增区间:2kπ-π/2<2x-π/6<2kπ+π/2
所以增区间为[kπ-π/6,kπ+π/3]

回答2:

f(x)=根号3sin2x-cos2x+1
=2sin(2x-π/6)+1
令2kπ-π/2<2x-π/6<2kπ+π/2
kπ-π/6所以增区间为[kπ-π/6,kπ+π/3]