(Ⅰ)x,y∈R,f(x+y)=f(x)?f(y),x<0时,f(x)>1 令x=-1,y=0则f(-1)=f(-1)f(0)∵f(-1)>1 ∴f(0)=1 若x>0,则f(x-x)=f(0)=f(x)f(-x) 故 f(x)=
故x∈Rf(x)>0 任取x 1 <x 2 f(x 2 )=f(x 1 +x 2 -x 1 )=f(x 1 )f(x 2 -x 1 ) ∵x 2 -x 1 >0∴0<f(x 2 -x 1 )<1 ∴f(x 2 )<f(x 1 ) 故f(x)在R上减函数 (Ⅱ)① a 1 =f(0)=1,f( a n+1 )=
由f(x)单调性知,a n+1 =a n +2故{a n }等差数列 ∴a n =2n-1 ② b n =
=
当n≥2时, ( b n ) min = b 2 =
∴
即log a+1 x-log a x+1<1?log a+1 x<log a x 而a>1, ∴x>1 故x的取值范围:(1,+∞) |