简单计算一下即可,答案如图所示
z = f[√(x^2+y^2)]∂z/∂x = [x/√(x^2+y^2)]f'∂^2z/∂x^2 = [y^2/(x^2+y^2)^(3/2)]f' + [x^2/(x^2+y^2)] f''同理 ∂^2z/∂y^2 = [x^2/(x^2+y^2)^(3/2)]f' + [y^2/(x^2+y^2)] f''∂^2z/∂x^2 + ∂^2z/∂y^2 = f'/√(x^2+y^2) + f'' = 0即 f'’(u) + f'/u = 0