AIOps,顾名思义是将AI赋能于IT运维管理。国际权威咨询机构Gartner在2016年的报告里首次提出AIOps的概念。
传统的IT运维工作,大多是借助监控软件查看数据,并依赖运维人员的经验进行根因定位和排障。有了AI的加持后,可以借助AI算法提前发现数据中的异常,并通过数据串联锁定可能根因,大大缩短故障处理时间、提高运维效率。
经过多年来的发展,越来越多的大中型企业投入智能运维AIOps的部署,以应对企业数字化转型带来的数据量暴增、系统架构复杂带来的运维挑战。
Gartner在其2022年的AIOps报告中也指出:Yes, There is no doubt: There is no future of IT operations that does not include AIOps. 毫无疑问,不包含AIOps的IT运维不会有未来。
相信在不久的将来,传统运维将渐渐被智能运维AIOps所替代。
通常,AIOps智能运维系统包含这几个功能模块:
智能运维即是AIOps,根据Gartner最新解释,指整合大数据和机器学习能力,通过松耦合、可扩展方式去提取和分析数据量(volume)、种类(variety)和速度(velocity)这三个维度不断增长的IT数据,进而为IT运维管理产品提供支撑。
运维发展至今,Ops已经从手工运维、流程化标准化运维、平台化自动化运维,来到了DevOps。近几年,Ops已经和大数据、AI融合,延伸出DataOps、AIOps。这是历史必然,也将为企业IT运维带来极高的效率,对于企业而言。AIOps意味着效率更高、成本更低、解决时间更短。
对比于传统运维工具,AIOps的优势非常明显:传统运维工具的指标采集维度过于单一,在判断故障时,会通过非常多的运维指标进行排查,这样会造成时间的浪费,对于传统运维数据更多的是依靠专家经验判断;
而AIOps可以通过底层的大数据平台进行分析,通过AI技术的充分学习判断,对告警进行直接的溯源、降噪,第一时间对运维人员展示故障的根本原因及定位,大大提高了工作效率和处理故障的时间。
AIOps,也就是基于算法的IT运维,是由Gartner定义的新类别,源自业界之前所说的ITOA。我们已经到达了这样的一个时代,数据科学和算法正在被用于自动化传统的IT运维任务和流程。算法被集成到工具里,帮助企业进一步简化运维工作,把人类从耗时又容易出错的流程中解放出来。人们不需要在遗留的管理系统中定义和管理无穷无尽的规则和过滤器。
在过去的几年间,一些技术不断涌现,利用数据科学和机器学习来推进日益复杂的企业数字化进程,“AIOps”因此应运而生。Gartner的报告宣称,到2020年,将近50%的企业将会在他们的业务和IT运维方面采用AIOps,远远高于今天的10%。
国内AIOps厂商也多种多样,其中听云,云智慧,睿象云等厂商均推出了AIOps产品,在这些国内的厂商中,不乏一些多次被Gartner提及的厂商。