求函数y=√(x^2-6x+13) -√(x^2+4x+5)值域

这是图
2024-12-03 05:00:03
推荐回答(3个)
回答1:

y=√(x^2-6x+13) -√(x^2+4x+5)
=√[(x-3)^2+2^2] -√[(x+2)^2+1]
可以看成(x,0)到(3,2)和(-2,1)两点的距离之差
由三角形两边之差小于第三边知最大值是(3,2)和(-2,1)两点的距离
也就是√26,此时易求出x=-7

由于y=√(x^2-6x+13) -√(x^2+4x+5)
=(x^2-6x+13-x^2-4x-5)/[√(x^2-6x+13)+√(x^2+4x+5)]
=(-10x+8)/[√(x^2-6x+13) +√(x^2+4x+5)]
所以当x>4/5,y都取负值,且在(4/5,正无穷)单调递减
所以y(min)=lim(x→正无穷)(-10x+8)/[√(x^2-6x+13) +√(x^2+4x+5)]
=lim(x→正无穷)(-10+8/x)/[√(1-6/x+13/x^2) +√(1+4/x+5/x^2)]
=-10/2=-5
所以值域是(-5,√26]

回答2:

1/y=(√(x^2-6x+13)+√(x^2+4x+5))/((x^2-6x+13)-(x^2+4x+5))
=(√(x^2-6x+13)+√(x^2+4x+5))/(8-10x)
当8-10x=0时,√(x^2-6x+13)=√(x^2+4x+5),此时y=0
当8-10x>0,即x<4/5时,x^2-6x+13>x^2+4x+5,此时
1/y=(√(x^2-6x+13)+√(x^2+4x+5))/(8-10x)
=√(x^2-6x+13)/(8-10x)^2+√(x^2+4x+5))/(8-10x)^2
当x→-∞时,1/y→1/5,即y→5
当8-10x<0,即x>4/5时,x^2-6x+13<x^2+4x+5,此时
1/y=(√(x^2-6x+13)+√(x^2+4x+5))/(8-10x)
=-[√(x^2-6x+13)/(8-10x)^2+√(x^2+4x+5))/(8-10x)^2]
当x→+∞时,1/y→-1/5,即y→-5
∴函数y=√(x^2-6x+13) -√(x^2+4x+5)值域为(-5,5)

回答3:

﹣√26<y≤√26