1.
根据
权方和不等式
:
1/(√a+√b)+1/(√b+√c)+1/(√c+√a)
>=
(1+1+1)^2/((√a+√b)+(√b+√c)+(√c+√a))
=
9/(2(√a+√b+√c))
设
f(x)
=
√x,
0<=x<=1,
则
f''(x)
<=
0,
所以
f(x)是凹函数,
=>
√a+√b+√c
=
f(a)+f(b)+f(c)
<=
3*f((a+b+c)/3)
=
√3
所以
1/(√a+√b)+1/(√b+√c)+1/(√c+√a)
>=
9/(2*√3)=(3√3)/2
(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc≤3(a^2+b^2+c^2)(利用a^2+b^2≥2ab)
3(a^2+b^2+c^2)≥1
a²+b²+c²≥1/3
(√a+√b+√c)^2=a+b+c+2√a√b+2√b√c+2√a√c≤3(a+b+c)=3(理由同上)
√a+√b+√c≤√3