因为样本X1,X2...X5,来自总体N(0,1),所以X1+X2~N(0,2) A=(X1+X2)/2^0.5~N(0,1),即X1+X2=A*2^0.5; B=(X3^2+X4^2+X5^2)~X^2(3),即X3^2+X4^2+X5^2=B; 由t分布的定义Y=A/(B/3)^0.5~t(3) 即Y=C*(A*2^0.5)/(B)^0.5=A/(B/3)^0.5; 故2^0.5*C=3^0.5,即C=(1.5)^0.5