1.配方法解方程:
(1)3x²-5x-7=0
解:3x²-5x-7=3(x²-5x/3)-7=3[(x-5/6)²-25/36]-7=3(x-5/6)²-25/12-7=3(x-5/6)²-109/12=0
(x-5/6)²=109/36,x-5/6=±(1/6)√109,故x=(5±√109)/6
(2)(2x-1)²=(3-x)²
解:4x²-4x+1=9-6x+x²;
3x²+2x-8=3(x²+2x/3)-8=3[(x+1/3)²-1/9]-8=3(x+1/3)²-1/3-8=3(x+1/3)²-25/3=0,
(x+1/3)²=25/9,(x+1/3)=±5/3,故x=(1±5)/3=2或-4/3.