曲线y=f(x)在点(2,f(2))处的切线方程式为y=3,说明函数过(2,3)点,且在该点的导数为0
f'(x)=a-1/(x+b)^2
f'(2)=a-1/(2+b)^2=0
f(2)=a2+1/(2+b)=3
a.b∈z
解得a=1
b=-1
f(x)=x+1/(x-1)
f'(x)=a-1/(x+b)^2
f'(2)=a-1/(b+2)^2=0
a*(b+2)^2=1
f(2)=3
2*a+1/(b+2)=3
2/(b+2)^2+1/(b+2)-3=0
b=-1,or b=-8/3