设函数f(x)=ax+1⼀(x+b)(a.b∈z),曲线y=f(x)在点(2,f(2))处的切线方程式为y=3,

求f(x)解析式
2025-04-01 18:25:20
推荐回答(2个)
回答1:

曲线y=f(x)在点(2,f(2))处的切线方程式为y=3,说明函数过(2,3)点,且在该点的导数为0

f'(x)=a-1/(x+b)^2
f'(2)=a-1/(2+b)^2=0
f(2)=a2+1/(2+b)=3

a.b∈z

解得a=1
b=-1
f(x)=x+1/(x-1)

回答2:

f'(x)=a-1/(x+b)^2
f'(2)=a-1/(b+2)^2=0

a*(b+2)^2=1
f(2)=3
2*a+1/(b+2)=3
2/(b+2)^2+1/(b+2)-3=0
b=-1,or b=-8/3