1⼀2^2+1⼀3^2+1⼀4^2+…+1⼀n^2<1-1⼀n(n≥2,n∈N)用数学归纳法证明不等式

2024-11-08 09:15:12
推荐回答(3个)
回答1:

证明:当n=2时,左边=1/2^2=1/4,右边=1-1/2=1/2,左边<右边,成立
假设当n=k时,1/2^2+1/3^2+...+1/k^2<1-1/k
当n=k+1时,左边=1/2^2+1/3^2+...+1/k^2+1/(k+1)^2
<1-1/k+1/(k+1)^2
=[1-1/(k+1)]+[1/(k+1)-1/k+1/(k+1)^2]
=[1-1/(k+1)]+(k^2+k-k^2-2k-1+k)/k(k+1)^2
=[1-1/(k+1)]-1/k(k+1)^2
<1-1/(k+1)
=右边
所以根据数学归纳法,原不等式成立

回答2:

1/2^2<1/1*2=1-1/2
1/3^2<1/2*3=1/2-1/3
.........
1/n^2<1/[n(n-1)]=1/(n-1)-1/n
左右全部相加
原式左边<1-1/n

即有1/2^2+1/3^2+1/4^2+......+1/n^2<1-1/n

【数学之美】很高兴为你解答,不懂请追问!满意请采纳,谢谢!O(∩_∩)O~

回答3:

当n=2时,左边=1/2^2=1/4,右边=1-1/2=1/2,左边<右边,成立
假设当n=k时,1/2^2+1/3^2+...+1/k^2<1-1/k
当n=k+1时,左边=1/2^2+1/3^2+...+1/k^2+1/(k+1)^2
<1-1/k+1/(k+1)^2
=[1-1/(k+1)]+[1/(k+1)-1/k+1/(k+1)^2]
=[1-1/(k+1)]+(k^2+k-k^2-2k-1+k)/k(k+1)^2
=[1-1/(k+1)]-1/k(k+1)^2
<1-1/(k+1)
=右边