三阶导数与拐点

2024-12-02 22:50:06
推荐回答(1个)
回答1:

这个是二阶导数为0的必要条件。
几何意义就是该点左右两端的极限不同(趋向于a+和a-),所以是个拐点~
如果要具体的,看看数学分析的书吧~

另:意义如下:
(1)斜线斜率变化的速度
(2)函数的凹凸性。

关于你的补充:
二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率。在图形上,它主要表现函数的凹凸性,直观的说,函数是向上突起的,还是向下突起的。
应用:
如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:
f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。
几何的直观解释:如果如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。

参考http://zhidao.baidu.com/question/30668913.html