比如23这个数字 ,我们就让它除以2得11余1 ,然后11再除以2得5余1 ,然后5再除以2得2余1 ,
2再除以2得1余0 ,所以23化成2进制就是10111 ,就是把余数从下往上写下来,第一位是1 。
二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统。
数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。
20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。
如1为二进制的是1,而2为1+1满2符合进位则为10;3就是11,而4为11+1便为二进制的100了 以此类推则得一系列的数字。二进制只有0和1两个数字符号来组成表示。进位规则是“逢二进一”
拓展资料:二进制由18世纪德国数理哲学大师 莱布尼兹发现。二进制是计算技术中广泛采用的一种,数制计算机系统使用的基本上是,二进制系统,数据在 计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。
19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。
20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。
二进制数就是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”。二进制数也是采用位置计数法,其位权是以2为底的幂。例如二进制数110.11,其权的大小顺序为2^2、2^1、2^0、2^-1、2^-2。对于有n位整数,m位小数的二进制数用加权系数展开式表示,可写为:
(a(n-1)a(n-2)…a(-m))2=a(n-1)×2^(n-1)+a(n-2)×2^(n-2)+……+a(1)×2^1+a(0)×2^0+a(-1)×2^(-1)+a(-2)×2^(-2)
+……+a(-m)×2^(-m)
二进制数一般可写为:(a(n-1)a(n-2)…a(1)a(0).a(-1)a(-2)…a(-m))2。
注意:
1.式中aj表示第j位的系数,它为0和1中的某一个数。
2.a(n-1)中的(n-1)为下标,输入法无法打出所以用括号括住,避免混淆。
3.2^2表示2的平方,以此类推。
【例1102】将二进制数111.01写成加权系数的形式。
解:(111.01)2=(1×2^2)+(1×2^1)+(1×2^0)+(0×2^-1)+(1×2^-2)
比如23这个数字
我们就让它除以2得11余1
然后11再除以2得5余1
然后5再除以2得2余1
2再除以2得1余0
所以23化成2进制就是10111
就是把余数从下往上写下来,第一位是1
2进制数 10111化成10进制
10111=1*2的4次方+0*2的3次方+1*2的2次方+1*2的1次方+1*2的0次方=23
两种方法:
1、第一步:除二取余,2/2=1......0,1/2=0......1,所以得到01;
第二步:倒序排列,得到10;
第三步:高位补零,得到00000010;
2、1的二进制是00000001,满2进1,
2的二进制就是00000010.
手打,满意请采纳^_^