解 :
(a+1)(a+3)(a+5)(a+7)
=(a+1)(a+7)(a+3)(a+5)
=(a^2+8a+7)(a^2+8a+15)
=(a^2+8a)^2+22(a^2+8a)+105
=a^4+16a^3+64a^2+22a^2+176a+105
=a^4+16a^3+86a^2+176a+105
供参考!江苏吴云超祝你学习进步
设a+4=K,则原式可化为
(K-3)(K-1)(K+1)(K+3)
=(K^2-9)(K^2-1)
=K^4-10K^2+9=(a+4)^4-10(a+4)^2+9
=a^4+16a^3+86a^2+176a+105
解: (a+1)(a+3)(a+5)(a+7)
=[(a+1)(a+7)][(a+3)(a+5)]
=[a^2+8a+7][a^2+8a+15]
=[a^2+8a+7][a^2+8a+7+8]
=[a^2+8a+7]^2+8[a^2+8a+7]
=………………
展开即可
解 :
(a+1)(a+3)(a+5)(a+7)
=(a+1)(a+7)(a+3)(a+5)
=(a^2+8a+7)(a^2+8a+15)
=(a^2+8a)^2+22(a^2+8a)+105
=a^4+16a^3+64a^2+22a^2+176a+105
=a^4+16a^3+86a^2+176a+105