初一的计算题,要用平方差公式或完全平方公式做

求(a+1)(a+3)(a+5)(a+7),要过程!
2025-04-16 09:00:58
推荐回答(4个)
回答1:

解 :
(a+1)(a+3)(a+5)(a+7)
=(a+1)(a+7)(a+3)(a+5)
=(a^2+8a+7)(a^2+8a+15)
=(a^2+8a)^2+22(a^2+8a)+105
=a^4+16a^3+64a^2+22a^2+176a+105
=a^4+16a^3+86a^2+176a+105

供参考!江苏吴云超祝你学习进步

回答2:

设a+4=K,则原式可化为
(K-3)(K-1)(K+1)(K+3)
=(K^2-9)(K^2-1)
=K^4-10K^2+9=(a+4)^4-10(a+4)^2+9
=a^4+16a^3+86a^2+176a+105

回答3:

解: (a+1)(a+3)(a+5)(a+7)
=[(a+1)(a+7)][(a+3)(a+5)]
=[a^2+8a+7][a^2+8a+15]
=[a^2+8a+7][a^2+8a+7+8]
=[a^2+8a+7]^2+8[a^2+8a+7]
=………………

展开即可

回答4:

解 :
(a+1)(a+3)(a+5)(a+7)
=(a+1)(a+7)(a+3)(a+5)
=(a^2+8a+7)(a^2+8a+15)
=(a^2+8a)^2+22(a^2+8a)+105
=a^4+16a^3+64a^2+22a^2+176a+105
=a^4+16a^3+86a^2+176a+105