Helmholtz定理 在有限的区域τ内,任意矢量场由它的散度、旋度、和边界条件(即限定区域τ的闭合曲面S上的矢量场的分布)唯一的确定。 任一矢量场都可以表示为一个梯度场(无旋场)和一个旋度场(管形场)的叠加。 判断过程的方向和限度的条件: 首先看一个通电圆圈的磁场分布。根据毕奥-萨伐尔定律,通过积分运算得到;在过圆心而且垂直于线圈平面的轴线上,距离圆心X处,磁场大小为B=u*R2*I/2[R2+X2][3/2],其中I为电流大小,R为圆圈半径,u为一个常数。亥姆霍兹线圈是两个彼此平行且连通的共轴圆形线圈,他的磁场分布是两个通电圆圈磁场的叠加。半径和两个圆圈的距离不同,叠加的结果也不同。两个线圈之外是逐渐减弱的,但是两个线圈之间可能是中间最弱,也可以是中间最强,还可以是匀强磁场。