找规律 1,2,2,4,8,32,256...第n个数怎么表示。谢谢!

请写出代数式,万分感激!!!
2024-12-05 03:09:12
推荐回答(6个)
回答1:

有点难!
1=2^0
2=2^1
4=2^2
8=2^3
32=2^5
256=2^8
......
指数为1,2,2,3,5,8...
斐波那挈数列通项公式的推导

斐波那挈数列:1,1,2,3,5,8,13,21……

如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)

显然这是一个线性递推数列。

通项公式的推导方法一:利用特征方程

线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.

则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5

∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】

通项公式的推导方法二:普通方法

设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1

n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]

将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)

那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

最终答案为F'(n)=2^(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

回答2:

前一个数乘后一个数

回答3:

1=2^0
2=2^1
2=2^1
4=2^2
8=2^3
32=2^5
256=2^8

.....

f(n)=f(n-1)*f(n-2) n>=3

回答4:

第一个数:2的0次方,第二个数:2的1次方,第三个数:2的2次方。第n个数:2的n-1次方

回答5:

1=2^0
2=2^1
4=2^2
8=2^3
32=2^5
256=2^8
从第4个开始,每个的指数都是前两项指数的和。因此:
5+8=13,所以下一项为2^13=8192

回答6:

n*(n-1)