当A严格正定时,
假设|0 X'|=r>0,
|X A |
令t=-r/|A|<0
于是
|t X'|=0
|X A |
所以存在不都为0的列向量Y和实数a,使得:
0 = [t X'] [a] = [at + X'Y]
[X A ] [Y] [aX + AY ]
于是
at + X'Y=0
aY'X+Y'AY=0
Y'AY = -aY'X = a^t <= 0,
由于A是严格正定的,所以必须Y=0,a=0,矛盾
对于一般的半正定矩阵A,对于t>0,
(A+tE)是严格正定的,所以
|0 X'| = |0 X' | <= 0
|X A | |X A+tE|