证明:延长BA、CE交于F∵∠BAC=90°,BE⊥CF,∠ADB=∠CDE∴∠CAF=90°,∠ABD=∠ACF∵在△BAD和△CAF中, ∠ABD=∠ACF,AB=AC,∠BAC=∠CAF∴△BAD≌△CAF(ASA)∴BD=CF∵BE是∠ABC的平分线,BE⊥CF∴CE=EF,即CF=2CE∴BD=2CE